APLICACIÓN DE LA METODOLOGÍA BAYESIANA EN LA ESTIMA DE PARÁMETROS GENÉTICOS PARA LA PRODUCCIÓN DE LECHE
D. Hernández1, P. López1, M.J. Carabaño1, R. Alenda2
1Depto. de Mejora Genética y Biotecnología, INIA. Apdo. 8111, 28080 Madrid
2
Depto. de Producción Animal. ETSIA. Ciudad Universitaria s/n 28040 Madrid
INTRODUCCIÓN
En un trabajo previo (Hernández y col., 1998) se planteó la actualización de las estimas de parámetros genéticos de los caracteres de producción lechera en la raza Frisona española mediante la utilización de nuevos procedimientos que permiten la utilización de bases de datos más numerosas. En ese trabajo se utilizó la totalidad de datos disponibles para la valoración nacional, obteniendose valores de heredabilidad para los caracteres kg de leche y kg de proteína próximos a 0.23, frente al valor 0.25, empleado en las valoraciones nacionales de esta raza. Estimas recientes obtenidas sobre muestras de esta misma población son cercanas a 0.26 (Ibáñez y col., 1999, Rekaya, 1997) o ligeramente superiores (Charffeddine, 1998). Por otra parte, las actualizaciones de parámetros genéticos en otras poblaciones de ganado Frisón han producido estimas de heredabilidades al alza, en torno o por encima del valor 0.30. La participación de nuestro país en comparaciones internacionales da más relevancia al valor que se asigna a la heredabilidad en la valoración nacional. Una de las causas de la menor heredabilidad en el estudio que incluía la totalidad de los datos podría ser la incorporación al control lechero de una alta proporción de animales provenientes de CC.AA. con baja heredabilidad. En un estudio previo sobre la heterogeneidad de varianzas en el carácter kg de leche se detectaba mediante la utilización de un modelo estructural sobre las varianzas (Foulley y col., 1990) una heterogeneidad de heredabilidades ligada al factor región (Ibáñez y col., 1999).
El objetivo de este trabajo fue el de estimar parámetros genéticos en las diferentes CC.AA. que aportan datos para la valoración nacional. Con ello se pretende investigar las posibles causas de la relativamente baja heredabilidad encontrada al nivel nacional y contrastar los resultados encontrados previamente sobre heterogeneidad de heredabilidades en la población Frisona española.
MATERIAL Y MÉTODOS
El archivo original con los datos disponibles para la valoración nacional de vacuno Frisón de enero-1998 para kg de leche fue dividido en 12 archivos de acuerdo con la comunidad autónoma (CA) de procedencia. Los datos y la genealogía fueron aportados por CONAFE. En la primera parte de la Tabla 1 se muestra el número de datos por CA.
La estimación de los parámetros de interés, los componentes de varianza y la heredabilidad y repetibilidad, se llevó a cabo con los datos de cada uno de los 12 archivos por separado. Se utilizó un procedimiento Bayesiano asociado al algoritmo de muestreo de Gibbs para obtener las distribuciones marginales a posteriori de los mencionados parámetros.
El modelo aplicado fue el que actualmente se emplea en la valoración nacional de Frisón (Pena, 1998. Comunicación personal), que es un modelo animal de medidas repetidas. La especificación de las distribuciones a priori, verosimilitud y distribuciones condicionales requeridas para la implementación del procedimiento de estimación pueden encontrarse en Hernández y col. (1998). El programa informático utilizado fue desarrollado por Rekaya (1997).
La implementación del muestreo de Gibbs se hizo mediante el uso de una única cadena larga, excepto en las primeras 15.000 iteraciones. Durante esta fase inicial se utilizaron dos cadenas que partían de distintos valores iniciales pero usaban la misma semilla para generar el muestreo aleatorio, de acuerdo con el método de cadenas pareadas propuesto por Johnson (1996).Una vez determinado el periodo mínimo de calentamiento, se obtuvo el número efectivo de muestras y la autocorrelación entre las mismas a partir de 4000 puntos obtenidos tras el calentamiento y con un intervalo entre muestras determinado por el procedimiento de Raftery y Lewis (1992). A partir del número de tamaño efectivo más bajo se calculó el número de iteraciones necesarias para obtener un total aproximado de 1000 muestras independientes.
RESULTADOS
En las Tablas 1 y 2 se presentan los estadísticos de tendencia central y la varianza de las distribuciones marginales posteriores de la heredabilidad y repetibilidad y de las varianzas, respectivamente. Todos los parámetros presentan valores acordes con los valores globales encontrados previamente para el total de datos(Hernández y col., 1998). Por otra parte, no se han detectado heredabilidades más bajas en CC.AA. que han incorporado más recientemente explotaciones al control lechero (caso de Galicia). Una posible explicación a la menor heredabilidad observada en el mencionado estudio podría ser la incorporación de grupos genéticos en el modelo, factor no considerado en otros trabajos en los que se han obtenido estimas más altas para esta población (Rekaya, 1997, Charffeddine, 1998, Ibáñez y col., 1999). De acuerdo con el trabajo de Pieramati y Van Vleck (1993), la inclusión de grupos genéticos reduce las estimas de varianza aditiva, lo que podría traducirse en menores estimas de la heredabilidad.
Tabla 1.- Número de lactaciones, número de animales con datos, estadísticos de tendencia central y varianza de la distribución marginal posterior de la heredabilidad y repetibilidad del carácter kg de leche en cada comunidad autónoma.
Heredabilidad
Repetibilidad
N. Lact.
N. Anim.
Media
Moda
Varianza
Media
Moda
Varianza
Andalucía
52941
25822
0.2052
0.2023
1.379E-4
0.4394
0.4396
3.602E-5
Aragón 16988
8008
0.2507
0.2498
3.701E-4
0.4749
0.4744
8.987E-5
Asturias 88117
38531
0.2107
0.2091
1.098E-4
0.4594
0.4590
2.296E-5
Baleares 91701
32313
0.2282
0.2254
1.133E-4
0.4586
0.4587
2.353E-5
Cantabria 125094
56899
0.2489
0.2485
9.505E-5
0.4469
0.4468
6.582E-5
Cast-León 25527
16233
0.1883
0.1858
3.025E-4
0.4715
0.4722
8.326E-5
Cast-Mancha 11743
7488
0.2002
0.2017
4.737E-4
0.4037
0.4036
2.127E-4
Cataluña 154364
65872
0.2296
0.2297
4.181E-5
0.4723
0.4726
1.568E-5
Galicia 239677
110508
0.2427
0.2435
5.203E-5
0.5297
0.5294
6.461E-6
Madrid 17893
9052
0.1747
0.1841
3.521E-4
0.4281
0.4295
1.124E-4
Navarra 90182
34929
0.2397
0.2401
1.073E-4
0.4728
0.4730
1.916E-5
País Vasco 166822
58537
0.2532
0.2520
5.715E-5
0.4618
0.4619
1.171E-5
Valencia 3837
1965
0.1276
0.1183
8.222E-4
0.3173
0.3175
5.974E-4
En cuanto a la heterogeneidad de varianzas, puede observarse en la Tabla 2 que existe una heterogeneidad de varianzas entre CC.AA., más marcada para las varianzas residuales que para las genéticas y permanentes. Parece observarse una tendencia a observar una menor varianza residual en las CC. AA. pertenecientes a la Cornisa Cantábrica y a Baleares, frente a las CC.AA. de las regiones más secas. Unas condiciones ambientales más homogéneas en los sistemas de explotación de la Cornisa Cantábrica podría ser una explicación. Otra explicación sería un efecto de escala, ya que algunas de las comunidades con menor variabilidad residual muestran un coeficiente de variación fenotípico más alto.
La heterogeneidad en heredabilidades es, sin embargo, relativamente baja en las CC.AA. que aportan el mayor volúmen de datos a la valoración, si bien se han encontrado valores de heredabilidad notablemente bajos en algunas CC.AA. con menor volumen de datos. Este resultado contrasta con la mayor heterogeneidad de heredabilidades encontrada en el estudio de Ibáñez y col. (1999). La inclusión de un volumen importante de datos más recientes y la utilización de distinta metodología podrían explicar las diferencias entre ambos estudios.
Tabla 2.- Estadísticos de tendencia central y varianza de la distribución marginal posterior de las varianzas del carácter kg de leche en cada comunidad autónoma.
Varianza Aditiva
Varianza Permanente
Varianza Residual
Media
Moda
Varianza
Media
Moda
Varianza
Media
Moda
Varianza
Andalucía
189897 187783 1.33E+8 216614 216011 1.07E+8 518644 517421 2.21E+7 Aragón 247992 247159 4.27E+8 221688 222775 3.16E+8 519161 519001 6.34E+7 Asturias 170530 168609 8.32E+7 201336 201879 5.42E+7 437380 437588 8766441 Baleares 188977 186264 9.61E+7 190745 190928 4.40E+7 448277 448434 9012490 Cantabria 172091 172469 4.84E+7 136894 136898 3.27E+7 382652 381874 2.33E+8 Cast-León 170387 167881 2.71E+8 256249 257860 2.54E+8 478115 477020 5.86E+7 C.-Mancha 210481 209417 5.84E+8 213776 209653 5.38E+8 626477 627622 2.08E+8 Cataluña 212714 212296 4.15E+8 224927 224809 4.18E+7 488494 488279 6868859 Galicia 409781 409598 3239173 250086 251257 3.47E+7 409781 409598 3239173 Madrid 179809 190313 4.16E+8 260512 259807 3.47E+8 588032 587839 9.05E+7 Navarra 221381 222123 1.07E+8 215321 215037 6.97E+7 486825 486874 9410925 País Vasco 197426 196153 4.18E+7 162680 162932 2.52E+7 419679 419586 4300264 Valencia 122933 112544 8.05E+8 182595 182737 1.14E+9 656578 653697 5.41E+8
CONCLUSIONES
De acuerdo con los resultados de este estudio y del estudio que consideraba el total de datos, no parece justificado modificar al alza el actual valor de heredabilidad empleado en la evaluación nacional. Por otra parte, la notable heterogeneidad de heredabilidades entre regiones encontrada en un estudio previo se ha visto reducida en este trabajo. Esto hace que la premisa de heredabilidad constante asumida por el actual procedimiento de ajuste de heterogeneidad de varianzas sea más asumible, al menos en lo que al factor región se refiere.
REFERENCIAS BIBLIOGRÁFICAS
Charffeddine, N. 1998. Tesis Doctoral. ETSI Agrónomos. Universidad Politécnica de Madrid.
Foulley, J.L., D. Gianola, M. San Cristobal, S.Mi., 1990. J. Dairy Sci. 73 : 1612-1624.
Hernández, D., M.J. Carabaño, R. Rekaya. 1998. ITEA. 94A: 305-315.
Ibáñez, M.A., M.J. Carabaño, R. Alenda. 1999. Livest. Prod. Sci. (En prensa).
Johnson, V.E. 1996. J. Amer. Statist. Assoc. 91: 154-166.
Pieramati. C. , L.D. Van Vleck. 1993. J. Anim. Sci. 71: 66-70.
Rekaya. R. 1997. Tesis Doctoral. ETSI Agrónomos. Universidad Politécnica de Madrid.