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abstract The aim of this short communication is to present a java package named RanFoG to analyze
disease traits in a genomic selection context or a genomewide association study scenario. RanFoG
implements random forest algorithm to analyze categorical or continuos traits. This java package
has been design to determine covariate (SNP) relative importance on the phenotype expression
and also to predict the outcome of yet-to-be observed records. The predictive ability performance
of the program was shown using two di�erent data sets: A simulated linear trait scenario and
a real binary trait data set. Random forest presented better predictive ability than Bayes A in
both type of data, and was similar to Bayesian LASSO using the simulated linear trait example.
RanFoG is a developing software that is available upon request to the authors.
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1 Introduction

Genomic selection o�ers new challenges such as the inclusion of new traits in the breeding
programs. Physiological and metabolic disorders (e.g., ketosis, mastitis, metritis, scro-
tal hernia, Johne's disease) cause important economic loss in farms due to an increase
of costs. These complex diseases hamper farms pro�tability and a�ect animal welfare.
Moreover, some countries' legislation regulates antibiotic use to minimize its use in animal
production due to a potential threaten of human health. Knowledge of genetic factors
contributing to individual susceptibility to certain diseases will allow selection of animals
genetically more resistant and even applying preventive measures to help minimizing dis-
ease development (e.g., by changing the diet, applying a determined drug, or changing
management practices). This may help increasing pro�tability in farms.

The statistical treatment of the genetic basis of these diseases is not straightforward
because most of them do not follow single-gene mendelian inheritance model, but multiple
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genes, gene by gene interactions, and gene by environment interactions underlie most
complex diseases. All these factors are seldom considered in genome-wide association
studies (GWAS) or genomic selection. Limited computational resources and di�culties to
capture all possible factors in a regression model are some of the restrictions to deal with.
Further, phenotypes of complex diseases are generally registered in a binary (healthy/sick)
or few classes shape and traditional methods are entirely based on p-value signi�cance.

Machine learning methods is becoming more and more popular to handle these prob-
lems [1]. They aim to improve a performance measurement by repeated observation of
experiences. The random forest (RF) algorithm [2] is one of the most appealing alterna-
tives to analyze complex disease related traits using dense genomic markers information,
and has been previously applied in GWAS for many human diseases. It may provide a
measurement of the importance of each marker on a given disease, have good predictive
performance and do not require speci�cation of the mode of inheritance. Further, it is a
fast algorithm even handling a large amount of covariates and interactions.

In the present communication we discuss the random forest approach for the inclusion
of genomic information in the analyses of complex diseases, and show the use of a java
program implementing this algorithm.

2 Random Forest algorithm with RanFoG

Random Forest is a massively non-parametric machine learning algorithm, robust to over-
�tting and able to capture complex interaction structures in the data, which may alleviate
the problems of analyzing genome-wide data. We have developed a java package called
RanFoG, that implements this algorithm on genomic data to predict the outcome of a
given disease. RanFoG is based on a version of classi�cation and regression trees using
bootstrapped samples of the data set. Two versions are available for its implementation
either on regression or classi�cation problems, and are available upon request to the
authors.

The implementation of random forest in RanFoG for genomic marker selection is
described next. Let y (nx1) be the data vector consisting of observed records for the
outcome of a given disease, and X = {xi} where xi is a (px1) vector representing the
genotype of each animal for p SNPs, to which T decision trees are grown. Note that main
SNP e�ects, SNP interactions, environmental factors or combination thereof may be also
included in xi. Each tree ht(X) is considered a classi�er (or regressor) with the training
set drawn at random with replacement from the distribution of y and X. The trees are
independent identically distributed random vectors, each of them casting a unit vote for
the most popular outcome of the disease (or average phenotype) at a given combination
of SNP genotypes. Each tree is grown as follows:

1. First, bootstrapped samples from the whole data set are drawn with replacement so
that realization (yi,xi) may appear several times or not at all in the bootstrapped
set Ψ(t), with t in (1, T ). This is considered as the root node of each tree.

2. Then, draw m out of p SNP markers at random, and select the SNP j, j ∈ (1, ...,m),
where j = argminjL(y, ht(X)), i.e. SNP j is that one that minimizes a given loss
function in the current node after observing its genotype. RanFoG uses entropy
criterion as loss function for classi�cation problems and the L2 loss function for
regression problems.
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3. Split the node in two daughter nodes according to SNP j genotype that one indi-
vidual may or may not have (e.g. individuals with the risk allele will pass to a child
node, and the remaining animals will pass to the other child node).

4. Repeat steps 2-3 until a minimum node size is reached (usually <5). The predicted
value of new point is the majority vote for the disease outcome at the ending nodes
(for regression problems, it is the average phenotype of the individuals in the node).

5. Repeat steps 1-5 a large enough number of times to grow a random forest.

Final predictions can be made by averaging the value predicted at each tree to obtain a
probability of being susceptible. In addition, RF may calculate the relative importance of
each SNP, covariate or interaction. The variable importance (VI) is estimated as follows.
After each tree is constructed, the out of bag samples (OOB), which are those observa-
tions left out in the bootstrapped sampling, are passed down the tree and the prediction
accuracy of disease outcome is calculated using the chosen criterion (e.g. misclassi�cation
rate, L2 loss function). Then, genotypes for the pth SNP are permutated in the OOB,
and the accuracy for the permutated SNP is again calculated. The relative importance
is calculated as the di�erence between these prediction accuracies (that from the original
OOB and that of the OOB with the permutated variable). This step is repeated for each
covariate and decrease of accuracy is averaged over all trees in the random forest. The
variable importance provides an insight of the SNP association level with the disease.
The SNPs with higher VI may be of interest for prediction of disease resistance at low
marker density, candidate gene studies or gene expression studies.

This RF design was implemented on two data examples (classi�cation and regression
problems) using the java package RanFoG:

Example 1. Regression. RCS simulated data
QMSim software [3] was used to simulate a reference population (40,195 animals) and

a testing population (1005 animals which were progeny of the reference population) for
a heritability trait of 0.25. The reference and the validation population were genotyped
using 9990 markers. Parameters of the simulations may be found in Jimenez-Montero et
al. [4]. Then, 2500 individuals from the reference population were randomly extracted
and used in the analyses.

Example 2. Classi�cation. Boars scrotal hernia classi�cation in a real data set

Data were provided by PIC North America, a Genus Plc company. The data set
contained records of scrotal hernia (SH) incidence (scored as 0 or 1) in 986 animals from
a commercial line born in elite genetic nucleus, where environmental conditions were
controlled and risk of infections is low. Genotypes of all animals with phenotypic records
were obtained for 6742 SNPs located in di�erent genomic regions including those identi�ed
as candidate regions in previous research. After genotype editing following Ziegler et al.
[5], 5302 SNPs were retained and 923 animals were used. For each individual and main
e�ect for SNP j th, we de�ned two covariates x1

j and x2
j , with x1

j = 1 if the genotype

was aa (0, otherwise), and x2
j = 1 if the genotype was AA (0, otherwise). Analysis was

performed in a cross validation scenario leaving 15% of youngest animals out as testing
set. Estimates reported are the average of twenty �ve independent RF runs.

Bayes A [6] was used as benchmark. A threshold version of Bayes A (TBA) was
used on the SH data. Additionally, Bayesian LASSO [7] was also used to analyze the
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simulated RCS data. Predictive ability of methods was based on predictive accuracy in
the testing set measured through mean squared error (MSE) and correlation between
predicted genomic value and true genomic value (TGV), rTI. Sensitivity and speci�city
were also used as predictive ability parameter in the SH data. These parameters provide
information about performance of methods to correctly predict resistant and susceptible
animals. In the SH database, the true genomic values were unknown. Hence, the EBVs
from the PIC routine genetic evaluation were assumed to be the TGV. These routine
genetic evaluations are implemented with BLUP and data on millions of animals were
used. The pedigree and phenotypic data included records collected over 15 years in
more than 20 countries. EBV accuracies of genotyped animals ranged between 0.50 and
0.98. We agree with criticism about the realism of this assumption under the presence
of important non-additive genetic e�ects and for low accurate EBV. However, this is the
closest value to TBV that, at this moment, we can obtain. This approach may re�ect
the bene�ts of genomic selection to the industry as it usually utilizes these EBV as TBV
despite of low accuracy. To minimize the issue of this approximation, true breeding
values were classi�ed as susceptible or non susceptible following the categorical nature of
the phenotype. Non susceptible animals were those in the lower α percentile of the EBV
distribution, whereas those in the upper 1 − α percentile were considered as susceptible
(αε{5, 10, 25, 50}). Lower values of α selected the more extreme animals, and smaller
approximation error is expected.

3 Results

Table 1 shows the Pearson correlation and MSE between predicted genomic value and
TGV from each model on the simulated RCS data. The performance of Random Forest
compared favourably with Bayes A and was similar to Bayesian LASSO. Both Bayesian
LASSO and RF showed larger Pearson correlation (0.57 and 0.59, respectively) and lower
MSE (0.15 and 0.19, respectively) than Bayes A (r = 0.33;MSE = 0.44). SNP estimates
in the higher 99th percentile were closer to the true QTLs using Bayesian LASSO. The
VI estimates in the 99th-percentile from RF detected a lower number of SNPs than Bayes
A and Bayessian LASSO, clustering around QTL's with larger e�ect (Figure 1).

Table 2 shows results obtained with the real SH data. Both methods (TBA and
RF) were more accurate in correctly detecting the most extreme animals, i.e. lower
misclassi�cation rate, and larger rφ, sensitivity and speci�city were achieved at lower
values of α. RF achieved misclassi�cation=0, rφ=1, sensitivity=1 and speci�city=1 at
α=5, which means a perfect classi�cation of most extreme animals. At this α level TBA
showed misclassi�cation rate=17%, rφ=0.71 and was less sensitive than RF. Random
Forest achieved up to a 81% larger rφ than TBA at α=25. The machine learning algorithm
was more speci�c but less sensitive than TBA. Therefore, detection of susceptible animals
was done more accurately using RF, whereas TBA detected resistant animals in a better
manner. Nonetheless, the choice of one or other method to correctly detecting susceptible
or resistant animals may depend upon the problem. Results showed that both RF and
TBA may misclassify intermediate animals. However, in a disease resistance genomic
selection context we are mainly interested in correctly detecting the most susceptible or
resistant animals (lower α values), and RF seemed to perform slightly better than TBA
to detect susceptibility to SH in this population.
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Table 1. Pearson correlation and mean squared error (MSE) between predicted and
true genomic values using Bayes A, Bayesian LASSO (BL) and Random Forest (RF) on
the RCS simulated data.

Bayes A BL RF

Pearson correlation 0.33 0.57 0.59
MSE 0.44 0.15 0.19

Table 2. Sensitivity, speci�city, Phi correlation and misclassi�cation rate of pre-
dictions using a threshold version of Bayes A (TBA) or Random Forest (RF) on the
extreme animals in the EBV α and (1 − α) percentile of the real scrotal hernia data
(αε{5, 10, 25, 50}).

Parameter Method α (number of records)

5 (12) 10 (79) 25 (98) 50 (138)

Speci�city RF 1 0.88 0.78 0.79
TBA 1 0.71 0.58 0.58

Sensitivity RF 1 0.52 0.52 0.46
TBA 0.75 0.58 0.58 0.56

Phi correlation RF 1 0.33 0.29 0.26
TBA 0.71 0.24 0.16 0.13

Misclassi�cation rate RF 0 41 39 38
TBA 17 39 42 43

4 Remarks

Genomic selection and GWAS on disease resistance in livestock species are likely to be-
come even more important in the next years because of worldwide guidelines on animal
and human health. In general, RF seems an elegant method with an interesting predic-
tive ability for disease resistance studies using whole genome information. In general, RF
outperformed the classi�cation predictive ability of TBA, and was better than Bayes A
for regression problems with similar performance to Bayesian LASSO. Moreover, RF is a
fast algorithm and robust to over�tting. These features make RF an appealing method
to evaluate disease resistance in a genomic selection context. Although, further research
on the method is necessary. Sires or individuals may be genomically evaluated for dis-
ease susceptibility, selecting those genetically more resistant to complex diseases a�ecting
farm pro�tability. Random Forest, as well as other methods, will need to be modi�ed
and adapted to deal with some of these issues and challenges at incorporating genomic
information in the analyses of disease traits.

Finally, strategies to include genomic selection for disease resistance on breeding pro-
grams have to be studied, developed and implemented.

Figure 1. Relative e�ect estimate and position of SNPs in the higher 99th-percentile
estimates from each model, and position and relative magnitude of the true QTLs.
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