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AN INTRODUCTION TO BAYESIAN ANALYSIS AND MCMC 
 
 

CHAPTER 1 
 

DO WE UNDERSTAND CLASSICAL STATISTICS? 
 
 
1.2. Test of Hypothesis 
 
1.2.1. The procedure 
 
Let us start with a classical problem: We have an experiment in which we want to test 
whether there is an effect of some treatment; for example, we are testing whether a selected 
population for growth rate has a higher growth rate than a control population. In classical 
statistics, the hypothesis to be tested is that there is no difference between the two 
treatments; i.e., the difference in growth between the selected and the control group is null. 
The classical procedure is to establish, before making the experiment, the error of rejecting 
this hypothesis when it is actually true, i.e., the error of saying that there is a difference 
between selected and control groups when actually there is not. Traditionally, this error, 
called error Type I, is fixed at a level of 5%, which means that if the null hypothesis is true 
(there is no difference between treatments), repeating an experiment an infinite number of 
times we can get an infinite number of samples of the selected and control groups, and the 
difference between the averages of these samples ( 1 2x x ) will be grouped around zero, 

which is the true value of the difference between selected and control populations (m1-m2) 
(see Figure 1.1). However we do not have money and time to take an infinite number of 
samples, thus we will only take one sample. If our sample lies in the shadow area of figure 1, 
we can say that: 
 

1) There is no difference between treatments, and our sample was a very rare 
sample that only will occur a 5% of times as a maximum if we repeat the 
experiment an infinite number of times, or 

 
2) The treatments are different, and repeating an infinite number of times the 

experiment, the difference between the averages of the samples ( 1 2x x ) will not 

be distributed around zero but around an unknown value different from zero. 
 

 

 
Figure 1.1. Distribution of repeated samples if H0 is true. When our actual difference between sample averages 
lies in the shadow area we reject H0 and say that the difference is “significant”. This is often represented by a star. 
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Neyman and Pearson (1933) suggested that the “scientific behaviour” should be to take 
option 2 acting as if the null hypothesis was wrong. A result of our behaviour will be that ‘in 
the long run’ we will be right almost in a 95% of the cases. 
 
There is some discussion in the classical statistical world about what to do when we do not 
reject the null hypothesis. In this case we can say that we do not know whether the two 
treatments are different, or we can accept that both treatments have the same effect, i.e. that 
the difference between treatments is null. Fisher (1925) defended the first choice whereas 
Neyman and Pearson (1933) defended the second one stressing that we also have a 
possible error of being wrong in this case (they called it Type II error to distinguish it from the 
error we managed before).   
 
1.2.2. Common misinterpretations 
 
The error level is the probability of being wrong: It is not. We choose the error level 
before making the experiment, thus a small size or a big size experiment may have the same 
error level. After the experiment is performed, we behave accepting or rejecting the null 
hypothesis as if we had Probability = 100% of being right, hoping to be wrong a small 
number of times along our career.  
 
The error level is a measure of the percentage of times we will be right: This is not true. 
You may accept an error level of a 5% and find along your career that your data were always 
distributed far away from the limit of the rejection (figure 1.2).  

 
 

 
 

Figure 1.2. An error level of 5% of being wrong when rejecting the null hypothesis was accepted, but along his 
career, a researcher discovered that his data showed much higher evidence about the null hypothesis being 
wrong 
 
 
The P-value is a measure of the “significance”: This is not true. Modern computer 
programs give the tail of probability calculated from the sample that is analyzed. The area of 
probability from the sample to infinite (shadow area in Figure 1.3) gives the probability of 
finding the current sample or a higher value when the null hypothesis is true. However, a P-
value of 2% does not mean that the difference between treatments is “significant at a 2%”, 
because if we repeat the experiment we will find another P-value. We cannot fix the error 
level of our experiment depending on our current result because we drive conclusions not 
only from our sample but also from all possible repetitions of the experiment that we have not 
performed (and we do not have the slightest intention to perform).  
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Figure 1.3. A P-value of 2% gives the probability of finding the current sample or a higher value if the null 
hypothesis holds. However this does not mean that the difference between treatments is “significant at a 2%”. 
 
There is a frequent tendency to think that if a P-value is small, when we will repeat the 
experiment it will still be small. This is not necessarily true. For example, if we obtain a P-
value of 5% and the TRUE value is the same as the value obtained in our sample, when 
repeating the experiment half of the samples will give a significant value (P<0.05) and half of 
them will not (P>0.05) (figure 1.4). Of course, if the true value is much higher, only few 
samples will give a significant difference when repeating the experiment, but in this case it is 
unlikely to find a P-value near 5% in a previous essay. We do not know where the true value 
is, thus we do not know whether we are in the situation of figure 1.4 or in other situation.  

 
Figure 1.4. Distribution of the samples when the true value is the same as the actual sample. The current sample 
gives us a P- value of 5%. If the true value is the same as our sample, notice that when repeating the experiment, 
half of the times we will obtain “non significant “ values (P>0.05). 
 
Obviously a low P-value shows a higher evidence for rejecting the null hypothesis than a 
high P-value, but it is not clear how much evidence it provides. A P-value gives the 
probability of finding the current sample or a higher value, but we are not interested in how 
probable is to find our sample, but in how probable our hypothesis is, and to answer to this 
question we need to use prior probabilities, as we will see in chapter 2. Fisher said that a P-
value of 0.05 shows either that the null hypothesis is not true or a rare event happened. How 
rare is the event is not clear. For example, Berger and Sellke (1987) show an example in 
which under rather general conditions, a P-value of 0.05 corresponds to a probability of the 
null hypothesis being true of a 23%, far more than the 5% suggested by the P-value. A 
conscious statistician knows what a P-value means, but the problem is that P-values suggest 
to the average researcher that they have found more evidence that they actually have, and 
they tend to believe that this 5% given by a P-value is the probability of the null hypothesis 
being right, which is not. 

 
According to the procedure of classical statistics, we cannot use P-values as a measure of 
significance because the error level is defined before the experiment is performed (at least 
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before it is analyzed). Thus, performing the classic procedure we do not have any measure 
of how much evidence we have for rejecting the null hypothesis, and this is one of the major 
flaws of classical statistics.  
 
Modern statisticians are trying to use P-values to express the amount of evidence the sample 
gives, but there is still a considerable discussion and no standard methods are hitherto 
implemented (see Sellke et al., 2001 and Bayarri and Berger, 2004, for a discussion). 
 
Significant difference means that a difference exists. This is not always true. We may be 
wrong one each twenty times as an average, if the error level is a 5%. The problem is that 
when measuring many traits, we may detect a false significant difference once each twenty 
traits (1). The same problem arises when we are estimating many effects. It is not infrequent 
to see pathetic efforts of some authors for justifying some second or third order interaction 
that appears in an analysis when all the other interactions are not significant, without 
realising that this interaction can be significant just by chance.   
 
N.S. (non significant difference) means that there is no difference between treatments. 
This is usually false. First, treatments are always different because they are not going to be 
exactly equal. A pig selected population can differ from the control in less than a gram of 
weight at some age, but this is obviously irrelevant. Second, in well designed experiments, 
N.S. appears when the difference between treatments is irrelevant, but this only happens for 
the trait for which the experiment was designed, thus all other measured traits can have 
relevant differences between treatments whereas we still obtain N.S. from our tests.  The 
safest interpretation of N.S. is “we do not know whether treatments differ or not”; this is 
Fisher’s interpretation for N.S. 
 
Our objective is to find whether two treatments are different. We are not interested in 
finding whether or not there are differences between treatments because they are not going 
to be exactly equal. Our objective in an experiment is to find relevant differences. How big 
should be a difference in order to consider it as relevant should be defined before making the 
experiment. A relevant value is a quantity under which differences between treatments have 
no biological or economical meaning. In classical statistics, the size of the experiment is 
usually established for finding a significant difference between two treatments when this 
difference is considered to be relevant. 
 
Significant difference means Relevant difference: This is often false. What is true is that if 
we have a good experimental design, a significant difference will appear just when this 
difference is relevant. Thus, if we consider that 100 g/d is a relevant difference between a 
selected and a control population, we will calculate the size of our experiment in order to find 
a significant difference when the difference from the averages of our samples | 1 2x x | ≥ 100 

g/d, and we will not find a significant difference if it is lower than this. The problem arises in 
field data, where no experimental design has been made, in poorly designed experiments 
and in well designed experiments when we analyze other trait than the trait used to find the 
size of the experiment. In these cases there is no link between the relevance of the 
difference and its significance, and we can find:  
 

1) Significant differences that are completely irrelevant: This first case is innocuous, 
although if significance is confused with relevance, the author of the paper will stress 
this result whit no reason. We will always get significant differences if the sample is big 
enough. Thus ‘significance’ itself is of little value. 
 

2) Non significant differences that are relevant: This means that the size of the 
                                                 
1 Once each twenty traits as a maximum if the traits are uncorrelated. If they are correlated the 
frequency of detecting false significances is different. 
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experiment is not high enough. Sometimes experimental facilities are limited because 
of the nature of the experiment, but a conscious referee should reject for publication 
“N.S.” differences that are relevant.  

 
3) Non significant differences that are irrelevant, but have high errors: Sometimes 

the estimation we have can be, by chance, near zero, but if the standard error of the 
estimation is high this means that when repeating the experiment, the difference may 
be much higher and relevant. For example, if a relevant difference for growth rate is 
100g/d in pigs and the difference between the selected and control populations is 10 
g/d with a s.e. of 150 g/d, when repeating the experiment we may find a difference 
higher than 100g/d; i.e., we can get a relevant difference. Thus, a “N.S.” difference 
should not be interpreted as “there is no relevant difference” unless the precision of 
this difference is good enough.  

 
4) Significant differences that are relevant, but have high errors: This may lead to a 

dangerous misinterpretation. Imagine that we are comparing two breeds of rabbits for 
litter size. We decide that one kit will be enough to consider the difference between 
breeds to be relevant. We obtain a significant difference of 2 kits with a risk of a 5% 
(we got one ‘star’). However, the confidence interval at a 95% probability of this 
estimation goes from 0.1 to 3.9 kits. Thus, we are not sure about whether the 
difference between breeds is 2 kits, 0.1 kits, 0.5 kits, 2.7 kits or whatever other value 
between 0.1 and 3.9. It may happen that the true difference is 0.5 kits, which is 
irrelevant. However, typically, all the discussion of the results is organised around the 
2 and the ‘star’. We will typically say that ‘we found significant and important 
differences between breeds’, although we do not have this evidence. The same 
applies when comparing our results with other published results; typically the standard 
errors of both results are ignored when discussing similarities or dissimilarities. 

 
We always know what a relevant difference is. Actually, for some problems we do not 
know: a panel of expertises analyse the aniseed flavour of some meat and they find 
significant differences of three points in a scale of ten points, is this relevant? Which is the 
relevant value for enzyme activities? Sometimes it is difficult to precise which the relevant 
value is, and in this case we are completely disoriented when we are interpreting the tables 
of results, because in this case we cannot distinguish between the four cases we have listed 
before. In appendix 1.1 I propose some practical solutions to this problem.  
 
Tests of hypothesis are always needed in experimental research. I think that for most 
biological problems we do not need any hypothesis test: The answer provided by a test is 
rather elementary: Is there a difference between treatments? YES or NOT. However this is 
not actually the question for most biological problems. In fact, we know that the answer to 
this question is always YES, because two treatments are not going to be exactly equal. Thus, 
usually our question is whether these treatments differ in more than a relevant quantity. To 
answer to this question we should estimate the difference between treatments accompanied 
by a measurement of our uncertainty. I think that the common practice of presenting results 
as LS-means and levels of significance or P-values should be substituted by presenting 
differences between treatments accompanied by their uncertainty expressed as confidence 
intervals when possible. 
 
 
1.3. Standard errors and Confidence intervals 
 
1.3.1. The procedure 
 
If we take an infinite number of samples, the sample averages (or the difference between two 
sample averages) will be distributed around the true value we want to estimate, as in Figure 
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1. The standard deviation of this distribution is called “standard error” (s.e.), to avoid 
confusion with the standard deviation of the population. A large standard error means that 
the sample averages will take very different values, many of them far away from the true 
value. As we do not take infinite samples, but just one, a large standard error means that we 
do not know whether we are close or not to the true value, but a small standard error means 
that we are close to the true value because most of the possible sample averages when 
repeating the experiment (conceptually, which means imaginary repetitions) will be close to 
the true value. 
 
When the sampling distribution is Normal (2), about twice the standard error around the true 
value will contain a 95% of the sample averages. This permits the construction of the so-
called Confidence Intervals at 95% by establishing the limits within the true value is expected 
to be found. Unfortunately, we do not know the true value, thus it is not possible to establish 
confidence intervals as in Figure 1, and we have to use our estimate instead of the true value 
to define the limits of the confidence interval. Our confidence interval is (sample average ± 2 
s.e.). A consequence of this way of working is that each time we repeat the experiment we 
have a new sample average (a new “estimate of the true value”) and thus a new confidence 
interval. 
 
For example, assume we want to estimate the litter size of a pig breed and we obtain a value 
of 10 with a confidence interval with a 95% of probability C.I.(95%)=[9, 11]. This means that if 
we repeat the experiment, we will get many confidence intervals: [8, 10], [9.5, 11.5] … etc. 
and a 95% of these intervals will contain the true value. However we are not really going to 
repeat the experiment an infinite number of times, and thus we only have got one interval! 
What shall we do? In classical statistics we behave as if our interval would be one of the 
intervals containing the true value. We hope, as a consequence of our behaviour, to be 
wrong a maximum of a 5% of times along our career.  
 
1.3.2. Common misinterpretations 
 
The true value is between ± s.e. of the estimate: We do not know whether this happens or 
not. First, the distribution of the samples when repeating the experiment might be not normal 
as it is in Figure 1. This is common when estimating correlation coefficients and they are 
close to 1 or to -1. Part of the problem is the foolish notation that scientific journals admit for 
s.e. It is nonsense to write a correlation coefficient as 0.95 ± 0.10.  Modern techniques (for 
example, bootstrap) taking advantage of easy computation with modern computers can show 
the actual distribution of a sample. A correlation coefficient sampling distribution may be 
asymmetric, like in figure 4. If we take the most frequent value as our estimate (-0.9), the s.e. 
has little meaning. 
 
The true value should be about the middle of the confidence interval, it is more 
proable that the true value is in the middle than in one of the sides: This is not true. 
Figure 5 shows that we do not know which one is our confidence interval. If it is one of the 
last ones of the figure, the true value will be closer to the left side of the interval. This is why 
it is important to consider the sides of the intervals, just because the true value may be there.  
 
A C.I. (95%) means that the probability of the true value to be contained in the interval 
is a 95%: This is not true. We say that the true value is contained in the interval with 
probability P=1, i.e., with total certainty. We utter that our interval is one of the “good ones” 
(figure 5). We may be wrong, but we behave like this and we hope to be wrong only a 5% of 

                                                 
2 Computer programs (like SAS) ask about whether you have checked the normality of your data, but 
normality of the data is not needed if the sample is large enough. Independently of the distribution of 
the original data, the average of a sample is distributed normally, if the simple size is big enough. This 
is often forgotten, as Fisher complained (Fisher 1925). 
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times as a maximum along our career. As in the case of the test of hypothesis, we make 
inferences not only from our sample but from the distribution of samples in ideal repetitions of 
the experiment 
 
Conceptual repetition leads to paradoxes: Several paradoxes produced by drawing 
conclusions not only from our sample but from conceptual repetitions of it have been noticed. 
The following one can be found in Berger and Wolpert (1982).  
 
 

 
Figure 4. Sampling distribution of a correlation coefficient. Repeating the experiment, the samples are not 
distributed symmetrically around the true value. 
 
.  

 

 
 

Figure 5. Repeating the experiment many times, a 95% of the intervals will contain the true value m. We do not 
know whether our interval is one of these, but we assume that it is. We hope not to be wrong many times along 
our career 
 

 
Figure 6. Repeating an experiment an infinite number of times we arrive to different conclusions if our pH-meter 
is broken or not, although all our measurements were correctly taken. 
 
Imagine we are measuring a pH and we know that the estimates will be normally distributed 
around the true value when repeating the experiment an infinite number of times. We obtain 
a sample with five measurements: 4.1, 4.5, 5, 5.5 and 5.9. We then calculate our CI 95%. 
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Suddenly, a colleague tells us that the pH-meter was broken and it could not measure a pH 
higher than six. Although we did not find any measure higher than six and then all the 
measurements we took were correct, if we repeat the experiment an infinite number of times 
we will obtain a truncated distribution of our samples (figure 6). This means that we should 
change our confidence interval, since all possible samples higher than 6 would be recorded 
as 6. Then another colleague tells us that the pH-meter was repaired before we started our 
experiment, and we write a paper changing the CI 95% to the former values. But our former 
colleague insists in that the pH-meter was still broken, thus we change again our CI.  
 
Notice that we are changing our CI although none of our measurements led in the area in 
which the pH-meter was broken. We change our CI not because we had wrong measures of 
the pH, but because if we would repeat the experiment an infinite number of times this will 
produce a different distribution of our samples. As we make inferences not only from our 
samples, but from imaginary repetitions of the experiment (that we will never perform), our 
conclusions are different if the ph-meter is broken although all our measurements were 
correct.  
 
 
1.4. Bias and Risk of an estimator 
 
1.4.1. Unbiased estimators 
 
In classical statistics we call error of estimation to the difference between the true value u 
and the estimated value û  
 

e = u – û 
 
We call loss function to the square of the error 
 

l(û,u) = e2 

 
and we call Risk to the mean of the losses(3) 
 

R(û,u) = E[l(û,u)] = E(e2) 
 
A good estimator will have a low risk. We can express the risk as 
 

                       2 2 2 2 2 2 2 2 2ˆR u,u E e E e e e E e E e e e var e Bias var e  

 
where we define Bias as the mean of the errors e . An unbiased estimator has a null bias. 
This property is considered particularly attractive in classical statistics, because it means that 
when repeating the experiment an infinite number of times, the estimates are distributed 
around the true value like in Figure 1. In this case the errors are sometimes positive and 
sometimes negative and their mean is null (and so is its square).  
 
1.4.2. Common misinterpretations 
 
A transformation of an unbiased estimator leads to another unbiased estimator: This is 

                                                 
3 All of this is rather arbitrary and other solutions can be used. For example, we may express the error 
as a percentage of the true value, the loss function may be the absolute value of the error instead of 
its square and the risk might be the mode instead of the mean of the loss function, but in this chapter 
we will use these definitions. 
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often not true. It is frequent to find researchers that carefully obtain unbiased estimators for 
the variance and then use them to estimate the standard deviation by computing their square 
root. For example, people working with NIR (near infrared spectroscopy, an analytical 
method) estimate the variance of the error of estimation by using unbiased estimators, and 
then they calculate the standard error by computing the square root of these estimates. 
However, the square root of an unbiased estimator of the variance is not an unbiased 
estimator of the standard deviation. It is possible to find unbiased estimations of the standard 
deviation, but they are not the square root of the unbiased estimator of the variance (see for 
example Kendall et al., 1992). Fisher considered, from his earliest paper (Fisher, 1912) that 
the property of unbiasedness was irrelevant due to this lack of invariance to transformations. 
 
Unbiased estimators should be always preferred: Not always. As the Risk is the sum of 
the bias plus the variance of the estimator, it may happen that a biased estimator has a lower 
risk, and thus it is a better estimator than another unbiased estimator (figure 7). 
 

 
Figure 7. A biased estimator (blue) is not distributed around the true value but has lower risk than an unbiased 
estimator (red) that is distributed around the true value with a much higher variance. 
 
For example, take the case of the estimation of the variance. We can estimate the variance 
as  
 

 
n

22
i

1

1
ˆ x x

k
    

 
It can be shown that the bias, variance and risk of this estimator are 
 

2 2 2 2 4
2

n 1 2(n 1)
BIAS( ˆ ) var( ˆ )

k k

 
         

 
2

2 2 2 2 4
2

n 1 2(n 1)
RISK( ˆ ) BIAS var

k k

           
 

 

 
depending on the value of k we obtain different estimators. For example, to obtain the 
estimator of minimum risk, we derive the Risk respect to k, equal to zero and obtain a value 
of k = n+1. But there are other common estimators for other values of k. When k=n we obtain 
the maximum likelihood (ML) estimator, and when k=n–1 we obtain the residual (or 
restricted) maximum likelihood estimator (REML) (see Blasco 2001). Notice that when k=n–1 
the estimator is unbiased, which is a favourite reason of REML users to prefer this estimator. 
However, the Risk of REML is higher than the risk of ML because its variance is higher, thus 
ML should be preferred… or even better, the minimum risk estimator (that nobody uses).  
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1.5. Fixed and random effects 
 
1.5.1. Definition of “fixed” and “random” effects 
 
Churchill Eisenhart proposed in 1941 a distinction between two types of effects. The effect of 
a model was “fixed” if we were interested in its particular value and “random” if it could be 
considered just one of the possible values of a random variable. Consider, for example, an 
experiment in which we have 40 sows in four groups of 10 sows each, and we feed each 
group with a different food. We are interested in knowing the effect of each food in the litter 
size of the sows, and then each sow has five parities. The effect of the food can be 
considered as a “fixed” effect, because we are interested in finding the food that leads to 
higher litter sizes. We also know that there some sows are more prolific than other sows, but 
we are not interested in the prolificacy of a particular sow, we consider that each sow effect 
is a “random” effect. When repeating an experiment an infinite number of times, the fixed 
effect always has the same values, whereas the random effect changes in each repetition of 
the experiment. When repeating our experiment, we will always give the same four foods, but 
the sows will be different; the effect of the food will be always the same but the effect of the 
sow will randomly change in each repetition.   
 
In Figure 8 we can see how the true value of the effects and their estimates are distributed. 
When repeating the experiment, the true value of the fixed effect remains constant and all its 
estimates are distributed around this unique true value. In the case of the random effect, 
each repetition of the experiment leads to a new true value, thus the true value is not 
constant and it is distributed around its mean. 

 
Figure 8. Distribution of the effects and their estimates when repeating the experiment an infinite number of 
times. When the effects are fixed the true value is constant, but when the effect is random it changes its value in 
each repetition. In red, the distribution of the true values; in blue, the distribution of the estimates. 

 
 
1.5.2. Bias, variance and Risk of an estimator when the effect is fixed or random 
 
By definition, bias is the mean of the errors,  
 
FIXED    BIAS = E(e) = E(u–û) = E(u) – E(û) = u – E(û)  
 
RANDOM BIAS = E(e) = E(u–û) = E(u) – E(û) 
 
In the case of fixed effects, as the true value is constant, u = E(u) and when the estimator is 
unbiased, the estimates are distributed around the true value. In the case of random effects 
the true value is not constant and when the estimator is unbiased the average of the 
estimates will be around the average of the true values, a property which is much less 
attractive. 
 
The variances of the errors are also different 
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FIXED:  var(e) = var(u – û) = var(û) 
 
RANDOM:  var(e) = var(u – û) = var(u) – var(û) 
 
In the case of fixed effects, as the true value is a constant, var(u) = 0, then the best 
estimators are the ones with smallest variance var(û) because this variance is the same as 
the variance of the error, which is the one we want to minimize. In the case of random effects 
the true values have a distribution and the variance of the error is the difference between the 
variance of the true values and the variance of their estimator (see Appendix 1.2 for a 
demonstration).  Thus, the best estimator is the one with a variance as big as the variances 
of the true values. An estimator with small variance is not good because its estimates will be 
around its mean E(û) and the errors will be high because the true value changes in each 
repetition of the experiment (see figure 8). Moreover, its variance cannot be higher than the 
variance of the true value and the covariance between u and û is positive (see Appendix 
1.2).  
 
The source of the confusion is that a good estimator is not the one with small variance, but 
the one with small error variance. A good estimator will give values close to the true value in 
each repetition, the error will be small, and the variance of the error also small. In the case of 
fixed effects this variance of the error is the same as the variance of the estimator and in the 
case of random effects the variance of the error is small when the variance of the estimator is 
close to the variance of the true value.  
 
 
1.5.3. Common misinterpretations 
 
 
An effect is fixed or random due to its nature: This is not true. In the example before, we 
might have considered the four types of foods as random samples of all different types of 
food. Thus, when repeating the experiment, we would change the food (we should not be 
worried about this because we are not going to repeat the experiment; all are “conceptual” 
repetitions). Conversely, we might have considered the sow as a “fixed” effect and we could 
have estimated it, since we had five litters per sow.  Thus the effects can be fixed or random 
depending on what is better for us when estimating them. 
 
We are not interested in the particular value of a random effect: Sometimes we can be 
interested in it. A particular case in which it is interesting to consider the effects as random is 
the case of genetic estimation. We know the covariances of the effects of different relatives, 
thus we can use this prior information if the individual genetic effects are considered as 
random effects. We have smaller errors of estimation than considering the genetic effects as 
fixed. 
 
Even for random effects to be unbiased is an important property: The property of 
unbiasedness is not attractive for random effects, since repeating the experiment the true 
values also change and the estimates are not distributed around the true value.  
 
Random effects have always lower errors than fixed effects: We need good prior 
information. We still need to have a good estimation of the variance of the random effect. 
This can come from the literature or from our data, but in this last case we need data enough 
and the errors of estimation are high when having few data. 
 
BLUP is the best possible estimator: As before, we can have biased estimators with 
higher risk as unbiased estimators. The reason for searching estimators with minimum 
variance (“best”) among the unbiased ones is because there are an infinite number of 
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possible biased estimators with the same risk, depending on their bias and their variance. By 
adding the condition of unbiasedness, it can be found a single estimator, called “BLUP”.   
 
 
 
1.6. Likelihood 
 
1.6.1. Definition 
 
The concept of likelihood and the method of maximum likelihood (ML) were developed by 
Fisher between 1912 and 1922, although there are historical precedents attributed to 
Bernouilli (1778, translated by C.G. Allen, see Kendall, 1961). By 1912 the theory of 
estimation was in an early state and the method was practically ignored. However, Fisher 
(1922) published a paper in which the properties of the estimators were defined and he found 
that this method produced estimators with good properties, at least asymptotically. The 
method was then accepted by the scientific community and it is now frequently used. 
 
To arrive to the concept of likelihood, I will put an example of Blasco (2001). Consider finding 
the average weight of rabbits of a breed at 8 wk of age. We take a sample of one rabbit, and 
its weight is y0 = 1.6 kg. The rabbit can come from a population normally distributed which 
mean is 1.5 kg, or from other population with a mean of 1.8 kg or from other possible 
populations. Figure 9 shows the density functions of several possible populations from which 
this rabbit can come, with population means m1=1.50 kg, m2= 1.60 kg, m3= 1.80 kg. Notice 
that, at the point y0, the probability density of the first and third population f(y0|m1) and 
f(y0|m3) are lower than the second one f(y0|m2). It looks very unlikely that a rabbit of 1.6 kg 
comes from a population which mean is 1.8 kg. Therefore, it seems more likely that the rabbit 
comes from the second population.  

 

 
 
 

Figure 9. Three likelihoods for the sample y0= 1.6. a: likelihood if the true mean of the population would be 1.5, b: 
likelihood if the true mean of the population would be 1.6. c: likelihood if the true mean of the population would be 
1.8 
 
All the values f(y0|m1), f(y0|m2), f(y0|m3), … define a curve with a maximum in f(y0|m2) (Figure 
10). 
 

a b c 
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Figure 10. Likelihood curve. It is not a probability because its values come from different probability distributions, 
bur it is a rational degree of belief. The notation stress that the variable (in red) is m and not y0 that is a given 
fixed sample.  
 
This curve varies with m, and the sample y0 is a fixed value for all those density functions. It 
is obvious that the new function defined by these values is not a density function, since each 
value belongs to a different probability density function.  
 
We have here a problem of notation, because here the variable is ‘m’ instead of ‘y’, because 
we have fixed the value of y=y0=1.6. Speaking about a set of density functions f(y0|m1), 
f(y0|m2), f(y0|m3)…  for a given y0 is the same as speaking about a function L(m|y0) that is not 
a density function. However this notation hides the fact that L(m|y0) is a family of density 
functions indexed at a fixed value y=y0. We will use a new notation, representing the variable 
in red colour and the constants in black colour. Then f(y0|m) means a family of density 
functions in which the variable is m that are indexed at a fixed value y0. For example, if these 
normal functions of our example are standardized (s.d. = 1), then the likelihood will be 
represented as  
 

 
 

 
 
 
where the variable is in red colour. We will use ‘f’ exclusively for density functions in a 
generic way; i.e., f(x) and f(y) may be different functions (Normal or Poisson, for example), 
but they will be always density functions. 
 
1.6.2. The method of maximum likelihood 
 
Fisher (1912) proposed to take the value of m that maximized f(y0|m) because from all the 
populations defined by f(y0|m1), f(y0|m2), f(y0|m3), … this is the one that if this were the true 
value the sample would be most probable. Here the word probability can lead to some 
confusion, since these values belong to different density functions and the likelihood function 
defined taking all of these values is not a probability function. Thus, Fisher preferred to use 
the word likelihood for all these values considered together.  
 
Fisher (1912, 1922) not only proposed a method of estimation, but also proposed the 
likelihood as a degree of belief different from the probability but allowing to express 
uncertainty in a similar manner. What Fisher proposed is to use the whole likelihood curve 
and not only its maximum, a practice rather unusual. Today, frequentist statisticians typically 
use only the maximum of the curve because it has good properties in repeated sampling 
(figure 11). Repeating the experiment an infinite number of times, the estimator will be 
distributed near the true value, with a variance that can also be estimated. But all those 
properties are asymptotic and thus there is no guarantee about the goodness of the 
estimator when samples are small. Besides, the ML estimator is not necessarily the 
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estimator that minimizes the risk. Nevertheless, the method has an interesting property apart 
from its frequentist properties: any reparametrization leads to the same type of estimator. For 
example, the ML estimator of the variance is the square of the ML estimator of the standard 
deviation, and in general a function of a ML estimator is also a ML estimator. 
 
From a practical point of view, the ML estimator is an important tool for the applied 
researcher. The frequentist school developed a list of properties that good estimators should 
have, but does not give rules about how to find them. Maximum likelihood is a way of 
obtaining estimators with (asymptotically) desirable properties. It is also possible to find a 
measurement of precision from the likelihood function itself. If the likelihood function is sharp, 
its maximum gives a more likely value of the parameter than other values near it. 
Conversely, if the likelihood function is rather flat, other values of the parameter will be 
almost as likely as the one that gives the maximum to the function. The frequentist school 
also discovered that the likelihood was useful for construction of hypothesis tests, since the 
likelihood ratio between the null and the alternative hypothesis has good asymptotical 
frequentist properties, and it is currently used for testing hypotheses. We will come back to 
this in chapter 10. 
 

 
 

Figure 11. Likelihood curve. Here m can take “likely” the values ‘a’ or ‘b’, however the frequentist school will only 
take the maximum at ‘a’ 
 
1.6.3. Common misinterpretations 
 
The method of maximum likelihood finds the estimate that makes the sample most 
probable: This is strictly nonsense, since each sample has its probability depending on the 
true value of the distribution from which it comes. For example, if the true value of the 
population is the case c in figure 9 (mTRUE = m3 = 1.8), our sample y0 = 1.6 is rather 
improbable, but its probability is not modified just because we use a maximum likelihood 
method to estimate the true value of m. Our maximum likelihood estimate will be m̂  = m2 = 
1.6, but the true probability of our sample still will be very low because it really comes from 
population c of figure 9. Therefore, the method of ML is not the one that makes the sample 
most probable. This method provides a value of the parameter that if this were the true value 
the sample would be most probable. As Fisher says, for the case of estimating the true 
coefficient of correlation ρ from the value r obtained in a sample: 
 

“We define likelihood as a quantity proportional to the probability that, 
from a population having that particular value of ρ, a sample having the 
observed value r, should be obtained”. 

Fisher, 1921 
 
A likelihood four times bigger than other likelihood gives four times more evidence in 
favour of the first estimate: This is not true. Unfortunately, likelihoods are not quantities 
that can be treated as probabilities because each value of the likelihood comes from a 
different probability distribution. Then they do not follow the laws of the probability (e.g., they 
do not sum up to one, the likelihood of excluding events is not the sum of their likelihoods, 
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etc.). Therefore a likelihood four times higher than other one does not lead to a “degree of 
rational belief” four times higher, as we will see clearly in chapter 7. There is an obvious risk 
of confusing likelihood and probability, as people working in QTL should know.  
Appendix 1.1. Definition of relevant difference 
 
In both classical and Bayesian statistics it is important to know which difference between 
treatments should be considered “relevant”. It is usually obtained under economical 
considerations; for example, which difference between treatments justifies to do an 
investment or to prefer one treatment. However there are traits like the results of a sensory 
panel test or the enzymatic activities for which it is difficult to determine what a relevant 
difference between treatments is. To find significant differences is not a solution to this 
problem because we know that if the sample is big enough, we will always find significant 
differences. I propose considering that a relevant difference depends on the variability of the 
trait. To have one finger more in a hand is relevant because the variability of this trait is very 
small, but to have one hair more in the head is not so relevant (although for some of us it is 
becoming relevant with the age). Take an example of rabbits: carcass yield has a very small 
variability; usually the 95% of rabbits have a carcass yield (Spanish carcass) between 55% ± 
2%, thus a difference between treatments of a 2.75%, which is a 5% of the mean, is a great 
difference between treatments. Conversely, 95% of commercial rabbits have litter size 
between 10 ± 6 rabbits, thus a 5% of the mean as before, 0.5 rabbits, is irrelevant. If we take 
a list of the important traits in animal production, we will see that for most of them the 
economical relevance appears at a quantity placed between ½ or ⅓ of the standard deviation 
of the trait. Therefore, I propose to consider that a relevant difference between treatments is, 
for all traits in which it is not possible to argue economical or biological reasons, a quantity 
placed between ½ or ⅓ of the standard deviation of the trait. This sounds arbitrary, but it is 
even more arbitrary to compare treatments without any indication of the importance of the 
differences found in the samples. 
 
Another solution that we will see in chapter 2 would be to compare ratios of treatments 
instead of differences between treatments. It can be said that a treatment has an effect a 
10% bigger than the other, or its effect is a 92% of the other one. This can be complex in 
classical statistical, mainly because the s.e. of a ratio is not the ratio of the s.e., and it should 
be calculated making approximations that do not always work well, but is trivial for Bayesian 
statistics when combined with MCMC. 
 
 


