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CHAPTER 6 
 

THE LINEAR MODEL 
 
 
 
6.1. The “fixed” effects model 
 
6.1.1. The model 
 
The model corresponds, in a frequentist context, to a “fixed effects model” with or 
without covariates. In a Bayesian context all effects are random, thus there is no 
distinction between fixed models, random models or mixed models. We will describe 
here the Normal linear model, although other distributions of the data can be 
considered, and the procedure will be the same. Our model consists in a set of effects 
and covariates plus an error term. For example, if we measure the weight at weaning of 
a rabbit and we have a season effect (with two levels) and a parity effect (with two 
levels) plus a covariate ‘weight of the dam’, the model will be 
 
yijkl = μ+ Si + Pj + b·Aijk + eijkl 

 
where S is the season effect, P the parity effect and A the age of the dam. As there are 
several piglets in a litter, yijk is the weight of the piglet l of a dam that belongs to the 
herd i, the piglet was born in the parity j, the dam had an age Aijk that was the same for 
all piglets born in the same litter. For example, in the following equations we have two 
rabbits of the same litter weighting 520 and 430 grams, born in season 1 and the 
second parity of the dam 111 that weighted 3400 grams. Then we have a rabbit that 
weighted 480 grams, born in the second season and the first parity of dam 221 that 
weighted 4200 grams, and finally we have a rabbit weighting 550 grams, born in 
season 1 and parity 1 of the dam 112 that weighted 4500 grams. 
 
520 = μ + S1 + P2 + b · 3400 + e1111 

430 = μ + S1 + P2 + b · 3400 + e1112 
480 = μ + S2 + P2 + b · 4200 + e2211 
550 = μ + S1 + P1 + b · 4500 + e1121 

 
In matrix form, 
  
 
 

1111
1

1112
2

2211
1

1121
2

520 1 1 0 0 1 3400 e
S

430 1 1 0 0 1 3400 e
S

480 1 0 1 0 1 4200 e
P

550 1 1 0 1 0 4500 e
P
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And, in general form, 
 
y = Xb + e 
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where y contains the data, X is a matrix containing the covariates and the presence (1) 
or absence (0) of the levels of the effects. b is a vector of all unknowns and e is a 
vector with the errors. We consider the errors having mean zero and being 
independently normally distributed, all of them with the same variance,  
 
e | σ2  ~ N(0, Iσ2) 
 
as in a Bayesian context there are not fixed effects, the correct way of expressing the 
distribution of the data is  
 
y | b ~ N(Xb, Iσ2) 
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In a Bayesian context, to completely specify the model we also need the prior 
distribution of the unknowns.  We will consider below two cases as in the Baby model: 
flat and conjugated priors.  
 
Our objective is to find the marginal posterior distributions of all unknowns; in our 
example 
 
f(μ|y), f(S1|y), f(S2|y), f(P1|y), f(P2|y), f(σ2|y)  
 
or combinations of effects, for example 
 

1

2

f |
S

S





  

y  

 
Although there are analytical solutions as in the Baby model, we only will develop the 
Gibbs sampling procedure. We need to obtain samples of the joint posterior distribution 
 
f(b, σ2 | y) 
 
We will obtain a matrix of chains, in which each row is a random sample of the joint 
distribution,  

 
    2

1 2 1 2S S E E    

478 15 10 45 39 0.21 140

501 10 2 87 102 0.12 90

523 3 51 12 65 0.15 120

  
   
 
 
       

 

 
each column is a random sample of the marginal posterior distribution of each element 
of b, and the last chain is a random sample of the marginal posterior distribution of σ2 
 
6.1.2. Marginal posterior distributions via MCMC using Flat priors 
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To work with MCMC-Gibbs sampling we need the conditional distributions of the 

unknowns  2f | ,b y  and  2f | ,y b . We do not know them, but we can calculate 

them using Bayes theorem. Using flat priors 
 

    1 2U , fb b consb b tant  

   2 2U 0,s f cons tant    

 
where U is the uniform function with its bounds. Now, the posterior distributions are 
 

           2 2 2f | , f | , f f | ,y y yb b b b  

 

          2 2 2 2f | , f | , f f | ,y b y b y b  

 
as we know the distribution of the data, we can obtain both conditionals 
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Notice that the formulae are the same, but the variable is in red, thus the functions are 
completely different.  
 
The conditional distribution of b is a multinormal distribution (Appendix 6.1). 
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11 12 2 2
1
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where b̂  has the same form as the minimum least square estimator (1) 
 

  1ˆ  b X X X y    

 
and the conditional distribution of σ2 is an inverted gamma distribution with parameters 
 

                                                 
1  We do not say that b̂  is the minimum least square estimator but that it has “the same form” to 
stress that we are not estimating anything by least squares in a frequentist way, although the 
first proof of the least square method given by Gauss was a Bayesian one (Gauss, 1809). 
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y Xb y Xb

. 

 

 2f | ,y b  ~ IG(α, β) 

 
We have algorithms to extract random samples of both functions, thus we can start 
with the Gibbs sampler as we have seen in chapter 4 and in the particular case of the 
baby model in chapter 5. 
 
We start with an arbitrary value for the variance (for example) and then we get a 
multiple sample value of b. We substitute this value in the conditional of the variance 
and we get a random value of the variance. We substitute it in the conditional 
distribution of the b and we continue the process (figure 6.1), as we have seen in 
chapter 5 for the baby model. 

 
Figure 6.1. Gibbs sampling process for the b and the variance of the Normal linear model 
 
 
6.1.4. Least Squares as a Bayesian Estimator 
 
The least square estimator was developed by Legendre under intuitive bases. Later, 
Gauss found the first statistical justification of the method, developing least squares 
first as the mode of the conditional posterior distribution and later under frequentists 
bases. In a Bayesian context, we have seen that, under flat priors, 
 

      
12 2ˆf | , ~ N , 'y b X Xb  

 
As in a Normal distribution the mean, mode and median are the same, the least square 
estimator can be interpreted as  
 

       1 2 2 2f f f
      bb X X X by by y yˆ ' mode | , median | , mean | ,  

 
Notice that this is a conditional distribution; i.e., the least square estimator needs a 
value for σ2 to be calculated. In a frequentist context, we estimate σ2, then we take this 

as the true value for the variance and we calculate b̂ . We do not take into account the 
error committed when estimating the variance. However, in a Bayesian context, we 
calculate the marginal posterior distribution for b 
 
f(b|y) = ∫f(b,σ2|y) dσ2 = ∫f(b|σ2,y) f(σ2) dσ2  
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we take into account all possible values of σ2 and multiply by their probabilities, 
integrating afterwards; i.e., we take into account the error of estimating the variance.  
 
In more philosophical grounds, as we need the true value of σ2 to find the least square 

estimate b̂ , we know that we never find a real least square estimate because we do 
not know the true value of σ2. Bayesian theory does not require true values to work. 

The Bayesian interpretation of b̂  is the mean, mode and median of a conditional 
distribution, in which σ2 is given. We do the same, but at least now we know what we 
are doing.  
 
 
6.2. The “mixed” model 
 
6.2.1. The model 
 
The model corresponds, in a frequentist context, to a “mixed model”. As we said 
before, in a Bayesian context all effects are random, thus there is no distinction 
between fixed models, random models or mixed models. We will also consider here 
that the data are normally distributed, although other distributions of the data can be 
considered, and the procedure will be the same. Our model consists in a set of effects 
and covariates plus what in a frequentist model is a “random” effect, plus an error term. 
We can add an individual genetic effect to the model of our former example, and we 
have in this case 
 
yijkl = μ+ Si + Pj + b·Aijk + uijkl + eijkl 

 
where uijkl is the individual genetic effect. In matrix form 
 
y = Xb + Zu + e 
 
 
where y contains the data, X is a matrix containing the covariates and the presence (1) 
or absence (0) of the levels of the effects. b is a vector of what in a frequentist context 
are “fixed effects” and covariates, u is a vector with the individual genetics effects that 
in a frequentist context are considered “random”, and e is a vector of the residuals.  Z 
is a matrix containing the covariates and the presence (1) or absence (0) of the levels 
of the individual genetics effects. If all individuals have records, Z = I, but if some 
individuals do not have records (for example the parental population, or traits in which 
data are recorded in only one sex), Z is not the identity matrix; for example: if 
individuals 1,3, 4, 5 and 6 have records but individuals 2 has no records,  
 
 
    y     =  Xb +            Z                     u  + e 
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     
     
       
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     
        

  

1

2

3

4

5

6

u
520 1 0 0 0 0 0

u
430 0 0 1 0 0 0

u
480 0 0 0 1 0 0

u
550 0 0 0 0 1 0

u
500 0 0 0 0 0 1

u

Xb e  
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Thus we will consider that we have ‘n’ data and ‘q’ genetic effects to be estimated. We 
consider the residuals normally independently distributed all of them with mean zero 
and the same variance σ2. We will take bounded flat priors for the variance 
 
e | σ2 ~ N(0, Iσ2) 
 
σ2 ~ U[0,p]  
 
where U[0,p] is the uniform distribution between 0 and p, both included, and p is 
subjectively chosen. 
 
The genetic effects are normally distributed with a variance-covariance matrix that 

depends on the additive genetic variance 2
u  and the relationship matrix A. This last 

matrix has the relationship coefficients between genetic effects and it is a known matrix 
that is calculated according to the parental relationships between individuals, based in 
Mendel’s laws. We will also take a bounded uniform distribution for the genetic 
variance. 
 

u | 2
u ,A  ~ N(0, A 2

u ) 

 
2
u  ~ U[0,p]  

 
where U[0,p] is the uniform distribution between 0 and p, both included, and p is 
subjectively chosen. 
 
We will also consider a uniform distribution for the other effects 
  
b ~ U[0,w]  
 
where 0 and w are vectors and w is subjectively chosen. U[0,w] is the uniform 
distribution between 0 and w, both included. 
 
Now the model is completely specified and we can write the distribution of the data 
 
y | b, u, σ2  ~ N(Xb+ Zu, Iσ2) 
 
Notice that this is a simplified notation. We should have written 
 

y | X, b, Z, u, A, 2
u , σ2 , ~ N(Xb+ Zu, Iσ2)

 
where  is the set of hypothesis we also need to define the data distribution (for 

example; the hypothesis that the sample has been randomly collected). We simplify the 
notation because X, Z, A and are always known and because given u we do not 

need A and 2
u  any more, since the genetic effects are yet determined. We can also 

write, in simplified notation, 
 

y | b, 2
u , σ2  ~ N(Xb, Z’AZ 2

u  + Iσ2) 

 
We have now new unknowns and combination of unknowns to estimate. Our objective 
is to find the marginal posterior distributions of all unknowns  
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f(μ|y), f(S1|y), f(S2|y), f(P1|y), f(P2|y), f(u1|y) f(u2|y),…, f( 2
u |y), f(σ2|y) 

 
or combinations of them, for example we can be interested in estimating the marginal 
posterior distribution of the response to selection, which can be defined as the 
distribution of the average of the genetic values of the last generation. 
 
 
6.2.2. Marginal posterior distributions via MCMC 
 
To work with MCMC-Gibbs sampling we need the conditional distributions of the 
unknowns.  
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 
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 
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We will write first the joint distribution 
 

           2 2 2 2 2 2
u u uf , , , | f | f, , ,, , ,b u u b b uy y  

 

Some unknowns are not independent “a prior”; for example u and 2
u . In this case we 

know by the theory of probability that P(A,B)=P(A|B)·P(B), thus 
 

     2 2 2
u u uf , f | f   u u  

 
but if some unknowns are independent “a priori”, for example u and b we know that 
 
f(b, u) = ·f(b)· f(u) 
 
then, assuming independence “a priori” between some unknowns, we have 
 

                    2 2 2 2 2 2 2
u u u uf , , , | f , ,| f f | f, fy yb u u b b u  

 
This supposition sometimes holds and sometimes not. For example, it is well known 
that the best dairy cattle farms have the best environment and also buy the best 
semen, thus their genetic level is higher and this generates a positive covariance 
between b and u. In the case of pigs in a model with only season effects, for example, 
it is not expected that the genetically best pigs come in summer or in winter, thus it 
seems that we can assume independence between b and u. It is less clear the 
independence between the genetic and environmental variances. Usually the literature 
in genetics offers heritabilities, which is a ratio between the genetic variance and the 
sum of the genetic and environmental variances, thus it Is not easy to have a 
subjective opinion of the genetic variance independent of our opinion about the 
environmental variance. However it is even more complicated to assess our opinion 
about the covariances, thus Bayesian geneticists prefer, with some exception (Blasco 
et al., 1998) to consider prior independence, hoping that the data will dominate the final 
result and this assumption will not have any consequence in the results.   
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Considering the prior distributions we have established in 6.2.1., we have 
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Now, all the conditionals are based in this function, but changing the red and black 
parts.  
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This is an inverted gamma, as we have seen in 6.2.1 and chapter 3, with parameters 
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This is also an inverted gamma distribution, with parameters 
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where y* = y – Zu. We have seen in 6.2.1 that this can be transformed in a multinormal 
distribution.  
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that can also be converted after some algebra in a multinormal distribution. 
 
After having the conditionals identified as functions from which we have algorithms for 
taking random samples from them, we can start with the Gibbs sampling procedure 
(Figure 6.2) as we did in the case 6.2.1. 
 

 
Figure 6.2. Gibbs sampling process for the components of the model y=Xb+Zu+e and the variance 
components 
 
 
 
BLUP as a Bayesian estimator 
 
In a Bayesian context there are no differences between fixed and random effects, thus 
we do not need mixed models and we can work with the same model as in 6.1.2. We 
will use vague priors for b. We assume independence between b and u. 
 
y = Xb + Zu + e = Wt + e 
 
W =[ X Z ]          t’=[ b’ u’ ] 
 
b | mb , S  ~ N(mb , S)        
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u | 2
u  ~ N(0, A 2

u )  

 

t | m, S, 2
u  ~  2

u
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y | t, 2  ~ N(Wt , I 2 ) 

 
Now we will find the mode of the posterior distribution of t given the data, but also 
conditioned to the variance components. Applying Bayes theorem, we have 
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equating to zero this leads to  
 

2 2ˆ ˆ       1 1W W t V t W y V m  

 

   2 2
2 2
u u

ˆ ˆ

ˆ ˆ

                                  

1 1

bS 0 S 0X mb b
X Z X Z y

0 A 0 AZ 0u u
 

 
2 1

2 1
b2

1
2
u

ˆ

ˆ






    
                   

X X S X Z
X y S mb

Z X Z Z A Z yu
 

 
These equations are very similar to the mixed model equations. In fact, if S-1=0 they 
are identical to the mixed model equations. This condition only holds if the prior 
variance of b is infinite; i.e., if we use unbounded flat priors for b. Therefore, in a 
Bayesian context, the difference between what in a frequentist context are called 
“fixed” or “random” effects is only the type of prior they have. A “fixed” effect in a 
frequentist context is just a random effect with an unbounded flat prior in a Bayesian 
context. The mystery of the difference between fixed and random effects has now been 
solved. 
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In a Bayesian context, BLUP is the mode of the joint posterior distribution of b and u, 
conditioned not only to the data, but to the values of the variance components, when 
we use an unbounded flat prior for b. Notice that in a Bayesian context BLUP is not 
biased or unbiased, since there are not repetitions of the experiment. We can be 
interested in what will happen in repetitions of the experiment, but our inferences are 
based only in our sample and the priors, not in the information of the sampling space. 
 
6.2.4. REML as a Bayesian estimator 
 
We have seen in 5.2.3 that the mode of the marginal posterior distribution of the 
variance gives an expression that is the same we obtain in a frequentist context for the 
REML estimate. The same happens in the linear model, the REML estimators of 

2
u and 2 are coincident with the mode of the joint marginal posterior density 

 

   

       

2 2 2 2
u u

2 2 2 2
u u

f | f , , , | d d

f , | , , f f d d f( , | , , ) f d

,

d

   

   

 

    



 

y b u y b u

b u y b u b u b u y u b u

 

 
when prior values are assumed to be flat for b and normal for u, as in the case of 
BLUP. Notice that this is not the best Bayesian solution; we usually will prefer the mean 
or the median of each marginal distribution for each variance component instead of the 
mode of the joint distribution of both variance components.  
 
 
6.3. The multivariate model 
 
6.3.1. The model 
 
When several correlated traits are analysed together, we use a multivariate model. 
Sometimes the models for each trait may be different. For example, when analyzing 
litter size and growth rate, a dam may have several litters and consequently several 
records for litter size, but only one data for growth rate. Moreover, many animals will 
have one data for growth rate but no data for litter size, because they were males or 
they were not selected to be reproductive stock. We will put an example in which one 
trait has several records and the other trait only one record: for example, in dairy cattle 
we have several records for milk production but only one record for type traits. This 
means that we can add an environmental effect that is common for all lactation 
records, but we do not have this effect in the type traits because we only have one 
record for animal. The multivariate model is  
 

1 1 1 1 1 1

2 2 2 2 2 2 2 2

  

   

y X b Z u e

y X b Z u W p e

 

 
where b1 and b2 are environmental effects (season, herd, etc.), u1 and u2 are genetic 
effects, p2 is the common environmental effect to all records of trait 2, and e1 and e2 
are the residuals. We assume 
 

y1 | b1, 
2
1  ~ N (Xb1, I

2
1 ) 
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y2 | b2, u2, p2,   
2
2  ~ N (Xb2 + Zu2 + Wp2, I

2
2 ) 

 

Uniform bounded
 
 
 

1

2

b

b
  

 

p2 ~ N(0, I 2
p ) 

 
2
p ~ Uniform, ≥0, bounded 

 

 
SORTED BY INDIVIDUAL

N ,
 

 
 

1

2

u

u
0 G A  

 

1 1 2

1 2 2

2
u u u

2
u u u

Uniform bounded
 

  
 







 
G  

 

 
SORTED BY INDIVIDUAL

N ,
 

 
 

1

2

e

e
0 R I  

 

1 1 2

1 2 2

2
e e e

2
e e e

Uniform bounded
 

  
 







 
R   

  
when vague priors are used, a multinormal distribution is often used for the priors of b1 
and b2 , and Inverted Whishart distributions (the equivalent to the inverted Gamma for 
the multivariate case) are used for G and R.  
 
It is also assumed prior independence between some unknowns. As most priors are 
constant,  
 

     2 2
1 2 1 2 p 1 2 pf , , , , , , , f , | f | u u b b p G R u u G p  

 
This model has the great problem in order to be managed that the design matrixes are 
different and we have an effect more in trait 2. If all design matrixes would be the 
same, we could write the model with both traits as 
 
y = Xb + Zu + Wp + e 
 
where y, b, p and u are the data and the effects of both traits. The only new 
distributions we need is  
 

 
SORTED BY INDIVIDUAL

N ,
 

 
 

1

2

p

p
0 P I  

 

1 1 2

1 2 2

2
p p p

2
p p p

Uniform bounded
 

  
 







 
P   
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In next paragraph we will see how we can write the multivariate model as if all design 
matrixes were the same and all traits would have the same effects. This technique is 
known as “data augmentation”.  
 
6.3.2. Data Augmentation 
 
Data augmentation is a procedure to augment the data base filling the gaps until all 
traits have the same design matrixes. Thus, if some traits have several season effects 
and one of the traits has only one season effect, new data come with several season 
effects for this trait until it has the same X matrix as the others. If one trait has only one 
record, new records are added until we have also a common environmental effect for 
this trait. The conditions that these new records added must follow are: 
 

1. The new records are added to fill the gaps until all traits have the same 
design matrixes 

  
2.  The new records must not be used for inferences, since they are not real 

records. 
 
The second condition is important. Inferences are only based on the sample y, the 
augmented data must not be used for inferences, and they will not add any information 
or modify the result of the analyses.  

 
Let us call z’ = [z’1, z’2] the vector of augmented data for trait 1 and 2, and let us call 
the new data vector with the recorded and the augmented data 
 

2
1 2

2

    
    
   

1

1

y y
y y

z z
 

 
the new multivariate model is now 
 

1 1 1 1

2 2 2 2 2





   

   
1y Xb Zu Wp e

y Xb Zu Wp e
 

 
which can be written as 
 

*    y Xb Zu Wp e  
 
and solved as in 6.2.2. Now we should find a way to generate the augmented data to 
avoid that they will take part in the inference.  
 
Let us call θ all unknowns 
 

2
p, , , , , θ u b p G R  

 
We should generate the augmented data z that are also unknown and should be 
treated as unknowns. As with the other unknowns θ, we should estimate the posterior 
distribution conditioned to the data f(θ, z | y). We do not know this distribution, but we 
know the distribution of the data and we can apply Bayes theorem. The joint prior, 
according to the laws of probability, is 
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f(θ, z | y) = f(θ | y) · f(z) 
 
Applying Bayes theorem, we have 
 

           f , f , f , f , f | f    | y y | yθ z θ z θ z θ z z θ| θ  

 
but, according to the laws of probability, we have 
 

     f , | =f | , f |z θ θ zy zy θ   

 
thus, substituting, we have 
 

         f , | f , | f f * | f   θ z z θ yθ θy y θ  

 
and now we can start with the Gibbs sampling because we know the distribution of y* 
and the conditionals (Figure 6.3). The only new conditional is the conditional of the 
augmented data, but the augmented data are distributed as the data, thus 
 

z | b, u, p, R ~ N(Xb + Zu + Wp, I 2
2 ) 

 
in each case, the data are sampled from the corresponding distribution 
 

z1 | b1, u1, p1 ,
2
1  ~ N(Xb1 + Zu1 + Wp1, I

2
1 )  

z2 | b2, u2, p2, 
2
2  ~ N(Xb2 + Zu2 + Wp2, I

2
2 ) 

 
 

 
Figure 6.3. Gibbs sampling process for the components of the multivariate model with augmented data 
 
At the end of the process we will have chains for all unknowns and for the augmented 
data z. We will ignore the augmented data and we will use the chains of the unknowns 
for inferences. This is a legitimate procedure, because we have sampled the 
distribution f(θ, z | y), which depends on the data y but not on the augmented data. 
 
In practice, it is more convenient to do a similar process augmenting residuals instead 
of data. See Sorensen and Gianola (2004) for details.  

 
 


