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CHAPTER 7 
 

PRIOR INFORMATION 
 
7.1. Exact prior information 
 
7.1.1. Prior information 
 
When there is exact prior information there is no discussion about Bayesian methods and it 
can be integrated using the rules of probability. The following example is based on an 
example prepared for Fisher, who was a notorious anti-Bayesian, but he never objected the 
use of prior probability when clearly established. 
 
There is a type of laboratoy mouse whose skin colour is controlled by a single gene with two 
alleles ‘A’ and ‘a’ so that when the mouse has two copies of the recessive allele (aa) its skin 
is brown, and it is black in the other cases (AA and aa). We cross two heterozygous and we 
have a descent that is black coloured. We want to know whether this black mouse is 
homozygous (AA) or heterozygous (Aa or aA). In order to know this, we cross the mouse 
with a brown mouse (aa) and examine the offspring (Figure 4.1).  
 
 

 
 
Figure 4.1. Experiment to determine wheter a parent is homocygous (AA) ot heterozygous (Aa or aA)  
 
If we get a brown mouse in the offspring, we will know that the mouse is heterozygous, but if 
we only get black offspring we still will doubt about wheter it is homo- or heterozygous. If we 
get many black offspring, it will be unlikely that the mouse is heterozygous, but before 
making the experiment we have some probabilities of obtaining black or brown offspring. We 
know that the mouse to be tested cannot be ‘aa’ because otherwise it would be brown, thus it 
received both alleles ‘A’ from its mother and father, or an allele ‘A’ from the father and an 
allele ‘a’ from the mother to become ‘Aa’, or the opposite, to become ‘aA’. We have three 
possibilites, thus the probability of being ‘AA’ is 1/3 and the probabilities of being 
heterocygous (‘Aa’ or ‘aA’, both are genetically identical (1)) is 2/3. This is what we expect 
before having any data from the experiment. Notice that these expectations are not merely 
‘beliefs’, but quantified probabilities. Also notice that they come from our knowledge of the 
Mendel laws and from the knowledge that our mouse is the son of two heterozygous.  
 
7.1.2. Posterior probabilities with exact prior information 

                                                 
1 We will no make any difference from  Aa and aA in the rest of the chapter, thus ‘Aa’ will mean both 
‘Aa’ and ‘aA’ from now. 
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Now, the experiment is made and we obtain three offspring, all black (figure 4.2). They 
received for sure an allele ‘a’ from the mother and an allele ‘A’ from our mouse, but our 
mouse still can be homozygous (AA) or heterozygous (Aa). Which is the probability of being 
each type? 
 
 

 
 
Figure 4.2. Experiment to determine wheter a parent is homocygous (AA) ot heterozygous (Aa or aA)  
 
To know this we will apply Bayes Theorem. The probability of being homozygous (AA) given 
that we have obtained three offspring black is 
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We know that if it is true that our mouse is AA, the probability of obtaining a black offspring is 
1, since the offspring will always have an allele ‘A’. Thus, 
 

 P 3 black | 1AA y  

 
We also know that the prior probability of being AA is 1/3, thus 
 

 P AA 0.33  

 
Finally, the probability of the sample is the sum of the probabilities of two excluding events: 
having a parent homozygous (AA) or having a parent heterozygous (Aa) (see footnote 2). 
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to calculate it we need the prior probability of being heterozygous, that we know it is  
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and the probability of obtaining our sample if it is true that our mouse is Aa. If our mouse 
would be Aa, the only way of obtaining a black offspring is that this offspring get his allele A 
from him, thus the probability of obtaining one black offspring will be ½. The probability of 
obtraining three black offspring will be ½ x ½ x ½ , thus 
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Now we can calculate the probability of our sample: 
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Then, applying Bayes theorem 
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The probability of being heterozygous can be calculated again using Bayes theorem, or 
simplily as 
 

   P  | 3 black 1 P  | 3 black 1 0.80 0.20Aa AA      y y  

 
Thus, we had a prior probability, before obtaining any data, and a probability after obtaining 
three black offspring 
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before the experiment was performed it was more probable that our mouse was 
heterozygous (Aa), but after the experiment it is more probable that it is homozygous (AA).  
 
Notice that the sum of both probabilities is 1 
 
P(AA | y) + P(Aa | y) = 1.00 
 
thus the posterior probabilitites give a relative measure of uncertainty (80% and 20% 
respectively). However, the sum of the likelihoods is not 1 because they come from different 
events 
 
P(y |AA) + P(y |Aa) = 1.125 
 
thus the likelihoods do not provide a measure of uncertainty. 

 
 
7.1.3. Influence of prior information in posterior probabilitites 
 
If instead of using exact prior information we had used flat priors, repeating the calculus, we 
will obtain 
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we can see that flat prior information had an influence in the final result. When having exact 
prior information it is better to use it. 
 
If we have exact prior information and we have a large amount of information, for example 
P(AA) = 0.002, computing the probabilities again we obtain 
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thus despite of having evidence from the data in favour of AA, we decide that the mouse is 
Aa because prior information dominates and the posterior distribution favours Aa. This has 
been a frequent criticism to Bayesian inference, but one wonders why an experiment should 
be performed when the previous evidence is so strong in favour of Aa.  
 
What could have happened if instead three black offspring we had obtained seven black 
offspring? 
 
Repeating the calculus for y = 7 black, we obtain 
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If flat priors were used, we obtain 
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in this case the evidence provided by the data dominates over the prior information. 
However, if prior information is very large 
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thus even having more data, prior information dominates the final result when it is very large, 
which should not be normally the case. In general, prior information loses importance whith 
larger samples. For example, if we have n uncorrelated data, 
 
 
 
taking logarithms 
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we can see that prior information has les and less importance as the number of data 
augments. 
 
 
7.2. Vague prior information 
 
7.2.1. A vague definition of vague prior information 
 
It is infrequent to find exact prior information. Usually there is prior information, but it is not 
clear how to formalize it in order to describe this information using a prior distribution. For 
example, if we are going to estimate the heritability of litter size of a rabbit breed we know 
that this heritability has been also estimated in other breeds and it has given often values 
between 0.05 and 0.11. We have a case in which the estimate was 0.30, but the standard 
error was high. We have also a high realized heritability in an experiment performed in 
Ghana, but our prejudices prevent us to take this experiment too seriously. A high heritability 
was also presented in a Congress, but this paper did not pass the usual peer review filter 
and we tend to give less credibility to this result. Moreover, some of the experiments are 
performed in situations that are more similar to our experiment, or with breeds that are closer 
to ours. It is obvious that we have prior information, but, how can we manage all of this? 
 
One of the disappointments the student that has arrived to Bayesian inference attracted by 
the possibility of profiting prior information for his experiments receives is that modern 
Bayesians tend to avoid the use of prior information due to the difficulties of defining it 
properly. A solution for this problem was offered in the decade of the 30s by the British 
philosopher and by the Italian mathematician Bruno de Finetti, but the solution is 
unsatisfactory in many cases as we will see. They propose, in the words of De Finetti that 
“Probability does not exist”. Thus what we call probability is just a state of beliefs. This 
definition has the advantage of including events like the probability of obtaining a 6 when 
throwing a dice and the probability of Scotland becoming an independent republic in this 
decade. Of course, in the first case we have some mathematical rules that will determine our 
beliefs and in the second we do not have these rules, but in both cases we can express 
sensible beliefs about the events. Transforming probability, which looks as a concept 
external to us, into beliefs, that looks like an arbitrary product of our daily mood, is a step that 
some scientists refuse to walk. Nevertheless, there are three aspects to consider: 
 

1. It should be clear that although beliefs are subjective, this does not mean that 
they are arbitrary. Ideally, the previous beliefs should be expressed by experts 
and there should be a good agreement among experts on how prior information is 
evaluated.  

 
2. Prior beliefs should be vague and contain little information; otherwise there is no 

reason to perform the experiment, as we have seen in 7.1.3. In some cases an 
experiment may be performed in order to add more accuracy to a previous 
estimation, but this is not normally the case. 

 
3. Having data enough, prior information loses importance, and different prior beliefs 

can give the same result, as we have seen in 7.1.3 (2). 
 
There is another problem of a different nature. In the case of multivariate analyses, it is 
almost impossible to determine a rational state of beliefs. How can we determine our beliefs 

                                                 
2 Bayesian statisticians often stress that having data enough the problem of the prior is irrelevant. However, having data 
enough, Statistics is irrelevant. The science of Statistics is useful when we want to determine which part of our observation is 
due to random sampling and what is due to a natural law.  
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about the heritability of first trait, when the second trait has a heritability of 0.2, the correlation 
between both traits is -0.7, the heritability of the third trait is 0.1, the correlation between the 
first and the third traits is 0.3 and the correlation between the second and the third trait is 0.4; 
then our beliefs about the heritability of the first trait when the heritability of the second trait is 
0.1, …etc.? Here we are unable of represent any state of beliefs, even a vague one.  
 
 
7.3. No prior information 
 
7.3.1. Flat priors 
 
Since the origins of Bayesian inference (Laplace, 1774) and during its development in the 
XIX century, Bayesian inference was always performed under the supposition of prior 
ignorance represented by flat priors. Laplace himself, Gauss, Pearson and others suspected 
that flat priors did not represent prior ignorance, and moved to examine the properties of the 
sampling distribution. Integrating prior information was not proposed until the work of de 
Finetti quoted before.  
 
It is quite easy to see why flat priors cannot represent ignorance: Suppose we think that we 
do not have any prior information about the heritability of a trait. If we represent this using a 
flat prior (figure 4.3), the event A “the heritability is lower than 0.5” has a probability of 50% 
(blue area). Take now the event B “the square of the heritability is lower than 0.25”. This is 
exactly the same event as event A, thus its probability should be the same, also a 50%.  
 
We are as ignorant about h2 as about h4, thus we should represent the ignorance about h4 
also with flat priors if they represent ignorance. However, if we do this and we also maintain 
that P(h4<0.25) = 50% we arrive to an absurd conclusion: we do not know nothing about h2 
but we know that h4 is closer to zero than h2 (figure 4.3). 
 

               
Figure 4.3. Flat priors are informative 
 
To avoid this absurd conclusion we have to admit that flat priors do not represent ignorance, 
but they are informative. The problem is that we do not know what this prior information really 
means. However, this information is very vague and should not cause problems; in most 
cases that data will dominate and the results will not be practically affected by the prior. 
  
7.4. Improper priors 
 
Some priors are not densities, for example: f(θ) = k, where k is an arbitrary constant, is not a 
density because ∫ f(θ) dθ = ∞. However, improper priors lead to proper posterior densities 
when 
 
 f(y) = ∫ f(y|θ) f(θ) dθ < ∞ 
 
 
Sometimes they are innocuous and they are not used in the inference, for example, 
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yN(μ,1) 
μ  k 
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thus in this case the posterior density of μ does not take into account the prior. 
 
In general, it is recommended to use always proper priors, to be sure that we always obtain 
proper posterior densities. When using Gibbs sampling, some densities look as proper ones 
and they may be improper. Although when using MCMC all densities are in practice proper 
ones (we never sample in the infinite), samples can have very long burning periods and can 
lead to chains that only apparently have converged. The recommendation is always to used 
proper priors (bounded priors with reasonable limits, for example), unless it has been proved 
that they are innocuous (Hobert and Casella, 1992).   
 
 
7.5. The Achilles heel of Bayesian inference 
 
Bayesian inference, or Inverse probability, as it was always called before and should still be 
called, is extremely attractive because of the use of probabilities and the possibility of 
integrating prior information. However, integrating prior information is much more difficult that 
the optimistic Bayesians of the fifties thought. This lead to use several artefacts in order to 
make possible the use of probability. Some statisticians think that an artefact multiplied by a 
probability will give an artefact and not a probability, and consequently they are reluctant to 
use Bayesian inference. There is not a definitive answer to this problem, and it is a matter of 
opinion to use Bayesian or frequentist statistics, both are now widely used and no paper will 
be refused by a publisher because it uses a type or the other type of statistics. 
 
Many users of statistics, like the author of this book, are not “Bayesians” or “frequentists”, but 
just people with problems. Statistics is a tool to help in solving these problems, and users 
depend more on the existence of easy solutions and friendly software than in the background 
philosophy. I use Bayesian statistics because I understand probability better than 
significance levels and because it permits to me to express my results in a more clear way 
for later discussion. Some other users prefer Bayesian statistics because there is a route for 
solving their problems: to make a joint posterior distribution, to find the conditionals and to 
use MCMC to find the marginal distributions. We behave as if we were working with real 
probabilities, (this should not be objected by frequentists). To know the true probabilities 
drives us to the PROBLEM OF INDUCTION, a very difficult problem that we cannot expose 
in this lecture notes. 
 


