GENOME-ENABLED PREDICTION

WITH THE BAYESIAN ALPHABET

BAYES A, BAYES B, Bayes C-pi,
BAYESIAN LASSO, BAYES R
(many other methods. These are prototypical)

Gianola, D., G. de los Campos, W. G. Hill, E. Manfredi, and R. Fernando (2009)
Additive genetic variability and the Bayesian alphabet. Genetics 183: 347-363.

Gianola, D. (2013) Priors in whole-genome regression: the Bayesian alphabet
returns. Genetics 194: 573-596



Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,* B. ]J. Hayes' and M. E. Goddard""

Genetics 157: 1819-1829 (April 2001)

ABSTRACT

Recent advances in molecular genetic techniques will make dense marker maps available and genotyping
many individuals for these markers feasible. Here we attempted to estimate the effects of ~50,000 marker
haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was
simulated with a marker spacing of 1 cM. The markers surrounding every 1M region were combined into
marker haplotypes. Due to finite population size (N. = 100), the marker haplotypes were in linkage disequilib-
rium with the QTL located between the markers. Using least squares, all haplotype effects could not be
estimated simultaneously. When only the biggest effects were included, they were overestimated and the
accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear
unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal
segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods
that assumed a prior distribution of the variance associated with each chromosome segment increased
this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic
values predicted from markers could substantially increase the rate of genetic gain in animals and plants,
especially if combined with reproductive techniques to shorten the generation interval.



CRUCIAL CONTRIBUTIONS OF
THE PAPER

* Use all markers in a linear regression model as
opposed to just a few ones

 Shift attention from a doubtful emphasis on QTL
(now superseded by the GWAS obsession)
search to genome-enabled prediction

« Hint at the possibility of obtaining earlier and
more accurate predictions of genetic values

« Use of cross-validation: something that had not
received much emphasis before (Utz et al. 2000
in plant breeding)



WE ARRIVED TOO LATE....

On Marker-Assisted Prediction of Genetic Value: Beyond the Ridge

Daniel Gianola,*"! Miguel Perez-Enciso’ and Miguel A. Toro*

Genetics 163: 347-365 ( January 2003)

ABSTRACT

Marked-assisted genetic improvement of agricultural species exploits statistical dependencies in the joint
distribution of marker genotypes and quantitative traits. An issue is how molecular (e.g., dense marker
maps) and phenotypic information (e.g., some measure of yield in plants) is to be used for predicting the
genetic value of candidates for selection. Multiple regression, selection index techniques, best linear
unbiased prediction, and ridge regression of phenotypes on marker genotypes have been suggested, as
well as more elaborate methods. Here, phenotype-marker associations are modeled hierarchically via
multilevel models including chromosomal effects, a spatial covariance of marked effects within chromo-
somes, background genetic variability, and family heterogeneity. Lorenz curves and Gini coefficients are
suggested for assessing the inequality of the contribution of different marked effects to genetic variability.
Classical and Bayesian methods are presented. The Bayesian approach includes a Markov chain Monte
Carlo implementation. The generality and flexibility of the Bayesian method is illustrated when a Lorenz
curve is to be inferred.



Genome-enabled prediction
using linear regression
models



STARTED IN ANIMAL BREEDING BUT
PLANT BREEDERS EMBRACED IT WITH JOY!!

Meuwissen, Hayes and Goddard (2001):
“Genomic selection™
Perhaps better terms:
“Genome-enabled selection”

“Genome-assisted selection”
PREFER NOT TO USE “Genomic prediction”

SNP effects combined

additively
Prototypical linear regression model (no nuisance parameter Effect of chromosomal segment
\ / alleles, haplotypes
r =1l !
y = ul, +®‘(.g. T e

— ’,
agi ol
QUESTIONS: Linear model in parameters
ABANDON QTLS, PEDIGREES, KNOWN GENES? 6

“Whole-genome prediction” (whole or part? Variable selection?)



THE DESIGN OF METHODS
FOR PREDICTION IS
SOMEWHAT “DIFFERENT”
THAN FOR INFERENCE



IS MODEL M “RIGHT”? 6 CAN BE A FUTURE PHENOTYPE

TAKING MODEL UNCERTAINTY INTO ACCOUNT BY MODEL AVERAGING

FEW MODELS

p(dly) = D p(Oly, M)p(My)

G
— f / (9 ) M) M W MANY MODELS
’ Vp/ y, M)p( Q —_—

Posterior after Posterior probability or density
Accounting for model Posterior distribution or density for model M of model
uncertaintiy

VARIANCE OF PREDICTAND TAKING MODEL UNCERTAINTY INTO ACCOUNT

Var(0ly) = Em[Var(fly,M)] + Var[Ey|6ly,M]]

Average “prediction Variance among predictgons
Error” variance from different models



CROSS-VALIDATION (CV)

Data available (genomic, phenotypic)
Data generated according to unknown process
Split into training (fitting)- testing (predictand) sets

Fitting process describes current data (model is
typically wrong). Sample may be idiosyncratic

Use training process to make statement about yet-
to-be observed data (testing set)

Prediction error (conditional and unconditional):
point estimate is obtained

Distribution of prediction errors (conditional or
unconditional): interval estimate. For this, CV must

be replicated ’




ILLUSTRATION OF A 4-FOLD CROSS-VALIDATION (red: testing set; white: training set)

Train run ]-

Test Train Train

Train FUN 2

Train Test Train

Train

ALGORITHM:

1: Choose a loss function L (e.g., mean squared error between predicted and observed outcome
2: Choose a set of training-testing splits (K=4)

3: Choose a set of regularization parameter values 74, 73,..., T4

4: for a=1 to Ado

5 for k=1 to K do

6: train model and find “best” parameter estimates corresponding to 7,

7 end for

8 L(ty) = Eﬁ.{% This is a single-realization from

9: end for the CV distribution. Repeat many {g
10: Tope = argming (L(7,)) Important > times! (data structure issues here)




seldom done in animal breeding in the pre-genomic era. Often
absent in GWAS and medical studies)

=>A. Prediction and goodness of fit are
different. a model that fits well to training data
may predict badly. A mechanistically poor
model can give better predictions that “fancier”
models

=>»B. Any cross-validation scheme (e.g., k-
folds) has a cross-validation distribution

THIS IS THE DISTRIBUTION THAT MATTERS AND NOT
THAT BASED ON THEORETICAL CONSIDERATIONS

FROM SOME MODEL



GOODNESS OF FIT (TRAINING= TRN) vs. PREDICTIVE ABILITY (TESTING= TST)
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HUMAN STATURE: MAKOWSKY et al. , Plos Genetics 2011



CROSS-VALIDATION UNCERTAINTY AND IMPACT OF LAYOUT:
2294 dairy bulls with progeny tests (“TBV”’)

(Erbe et al. 2010)

correlation(TBV,GEBV) - trait: milk yield (kg)

0.90-

0.85 A= pedigree based kinship matrix O A+G
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0.75- )

0.70-

0.55 g O : B ig I 5
1 B ipg

0.50 = .

0.45-

0.40-

100 200 300 400 500 600 700 800 SO0 1000 1100 1200 1300 1400 1500
number of animals in the validation set (n total=2294)

03.08.2010 WCGALP Leipzig 13132



“THE BAYESIAN ALPHABET”

Series of Bayesian multiple linear regression models
that just differ in the conditional prior adopted at some level of the hierarchical model. All
such priors and hyper-parameters INFLUENCE inference whenever n<<p
and sometimes predictive performance as well

08
|

06
|

EXAMPLES

-Bayesian BLUP (Gaussian conditional prior)

-Bayesian Lagso (double exponential conditional prior)

= -Bayes C-11 (mixture conditional prior with Gaussian component
7 and unknown 1T )

-Bayes A (t-prjor)

-Bayes B (mixture conditional prior with t- component and know 1t
-Bayes R, RS| RC even greedier mixtures

04

DE: thick tailed and leptokurtic
t: thick tailed

5]

Density of a standard normal random variable (black), of a double-exponential random variable (blue) and of a random variable
following a mixture density with a mass point at zero (with probability 0.8) and a Gaussian process with probability 0.2. All variables
with zero mean and variance equal to one.



IMPORTANT ISSUE HERE:

The Bayesian statement about
marker effects 1s the marginal
and not the conditional prior!




What are your Bayesian beliefs about marker effects?

HIERARCHICAL MODEL: SUPPOSE  6; ARE MARKER EFFECTS
MODEL INVOLVES:  6;,05,05,0s
p(61,02,0,04H)
= P(01/05, 05,04, H)p(02103,04,H)p(03]04, H)p(04, H)

Your Bayesian beliefs about marker effects depends
on the values of 62, 63 and 64

‘ Since you are also uncertain about 62, 63 and 64, your
beliefs about markers are conveyed by the marginal prior

pP(0:|H)
— [ [ [ p(01165.65,04,H)p(0:163. 04, H)p(B53]0s, H)p(64, H) 20300,



THE CURSE OF THE BAYESIAN
ALPHABET

wmr BORIS KARLOFF



Genetics: Early Online, published on July 9, 2014 as 10.1534/genetics.114.164442

Genome-wide Regression & Prediction with the BGLR statistical
package

Paulino Pérez
Socio Economia Estadistica e Informatica.
Colegio de Postgraduados, México
perpdgo@colpos.mx
Gustavo de los Campos
Department of Biostatistics. Section on Statistical Genetics
University of Alabama at Birmingham, USA
gcampos@uab.edu

CAN FIT MOST MEMBERS OF THE “ALPHABET WITH THIS R PACKAGE



Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,* B. ]. Hayes' and M. E. Goddard"*

Genetics 157: 1819-1829 (April 2001)

BAYES A + BAYES B
(both pose the same data-generating model)

(as | understand these two methods)



Code for genotype

. , of SNP j:
Linear model proposed by Meuwissen et al. (2001) x=-1.0.1
p
Vi = u+ ZXijbj + €i,
J=1 Additive substitutior
_ effect.of
SCALAR 1=1,2,...,n; nN<<p ~ SNP]

p
yil, xi,b,06 ~ N ,Lt-l-ZXijbj,Gg
=1

y=1u+Xb +e,

R vl X.b ~ N1 + Xb, Io2)




The priors for Bayes A

Note: this is a conditional prior
Not true that each marker has different prior
(as claimed in Meuwissen et al. (2001))

1 ~ uniform

2 2 —2
Ge‘Ve,Se ~ Vede X v,

N(0,6% ):j = 1,2,....p

G%j‘l),sz = VbSb%Vbaj = 200052

Hyper-parameters, specified arbitrarily



MARGINAL PRIOR OF MARKER EFFECTS IN BAYES A

Marginal prior

p(bylv,$) = [N(0,c7fp(vS>x:2)do?
0 S

These hyper-parameters
will control the extent

of shrinkage. Question:
does their influence vanish
asymptotically?

(Meuwissen et al., 2001)

bjlo7 ~ N(O,Gf) J71,2,...p

o7[v,S? ~ vS? 3

Kernel of Gaussian

— e

(o2)* exp(—
- 1+v+ 7 2 2 :
SR G

The prior of a marker
effect is a t-distribution
with known scale and df

MARGINALLY: IN BAYES A ALL MARKERS HAVE THE SAME VARIANCE



###FOUR PRIORS FOR BAYES A

###PRIOR 1 SCALE INVERTED CHI-SQUARE S2=1, nu=4.5
###PRIOR 2 SCALE INVERTED CHI-SUQARE S2=1, nu=9
###PRIOR 3 SCALE INVERTED CHI-SQUARE S2=2, nu=4.5
###PRIOR 4 SCALE INVERTED CHI-SQUARE S2=2, NU=9
###IN ALL CASES, CONDITIONAL PRIOR FOR b is N(0O,var)

fissasasarasy

S2=1

nu=4.5
var<-numeric(25000)
var<-rchisq(25000,nu)
var<-nu*S2/var

b1<-numeric(length(var))

for (i in 1:length(var)){
b1[i]<-rnorm(1,0,sqrt(varfi]))
}

HHHHHH

S2=1

nu=9

var<-rchisq(25000,nu)
var<-nu*S2/var

b2<-numeric(length(var))
for (i in 1:length(var))

b2[i]<-rnorm(1,0,sqrt(varfi]))
¥

###FOUR PRIORS FOR BAYES A

###PRIOR 1 SCALE INVERTED CHI-SQUARE S2=1, nu=4.5
###PRIOR 2 SCALE INVERTED CHI-SUQARE S2=1, nu=9
###PRIOR 3 SCALE INVERTED CHI-SQUARE S2=2, nu=4.5
###PRIOR 4 SCALE INVERTED CHI-SQUARE S2=2, nu=9
###IN ALL CASES, CONDITIONAL PRIOR FOR b is N(0O,var)

HHHHHHET
S2=2
nu=4.5

var<-rchisq(25000,nu)
var<-nu*S2/var

b3<-numeric(length(var))

for (i in 1:length(var)){
b3[i]<-rnorm(1,0,sqrt(varfi]))
}

HHHHHH

S2=2

nu=9

var<-rchisq(25000,nu)
var<-nu*S2/var

b4<-numeric(length(var))
for (i in 1:length(var))

b4[i]<-rnorm(1,0,sqrt(varfi]))
¥
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ECDF plot for Priors 1=black 2=red
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Sample values
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A Gibbs sampler for Bayes A
(see BGLR)

(element-wise sampling)

Note: the form of the implementation is just an
algorithmic matter: it is immaterial with
respect to model-related issues



Sampling the mean

-

P
MELSE ~ N| L 37 yi— > xijby |,

Flat prior for the mean (or for the fixed effects) is not influential




Sampling the residual variance

o2|ELSE ~n(1 + %)

Goes to n

\

»O

P
Yi—u E Ij ' +VeS%

j=1

\

J

-2
%Ve-l-n

The prior can be “killed” simply by increasing sample size

This will dominate the weighted average

as n increases



Sampling the marker effects

B n
Z Xij| Vi
i=1

P
— 1= ) Xih;

i'=1

o¢

bj|ELSE ~ N

] =1,2,...,p

Kill the prior simply by increasing sample size. The effect of the shrinkage ratio vanishes

n

2

n

z : 2

. Oy
I=1

o3

]

n
2
o8 x2
52 § : ij
bj i=1

> N
2 X+
I=1

o3

2
Oy

j




Sampling the variance of the marker effects

b? + vS?
G%J.|ELSE ~ v<1 + %) Jl Y Xvel

— b\ 2 —
Prior df: very influential ! <?J> + v \
_ 1 2 -2
B V<1 + Vv >S 1 + Vv ‘%V—Fl

Typically very small

J — 19 29 *°* ) p
*Prior cannot be killed here. Can increase number of data points or of
markers ad nauseum and gain only one degree of freedom, always
*Recall that, in the conditional posterior, all other parameters are known (i.e.,
they are assigned values)
*Since one must de-condition, actually the true posterior moves “less than
one degree of freedom” away from the prior
*Meuwissen et al. (2001) mistakenly thought that learning about agjwould

inform about “genetic variance architecture”



A WAY OF LOOKING AT SHRINKAGE OF
MARKER EFFECTS IN BAYES A

‘yghﬁ., ol ~ N (wi|xiB.02) ,i=1,2,...,n; B;|S5,v ~IID t(5;[0,53,v), §=1,2,...,p,

where :-:: is the i** row of X. Conditionally on u:r‘;':_, Sf? and v, the joint posterior density 13

- 1 2 ? 3?
p(B1S5.v.00,y) o | [ exp [__g (% — xiB) }H 1+
i=1 202 j=1 Sgv

Using results presented in the Appendix ("Mode of the conditional posterior distribution in Bayes A"), an

iterative scheme for locating a mode of (7) is given by \ Gianola (2013)

o -1 iy — 1 .
‘ it = (xx+ W) Xy = (xx+WE) x'xg0 ()

. ) / Markers with tiny effects are

14+
2

shrunk strongly)

with successive updating; here. 117§] = Diag { —=

S 1 g
+
S%u )

will do so to one of perhaps many stationarv points, as it 15 known that t—regression models may produce

v 15 a diagonal matrix. If this converges, it

multi-modal log-posterior surfaces, especially if v 15 small (McLachlan and Krishnan 1997). Hence, iteration



Impact of marker effect and of degrees of freedom (df) on shrinkage towards

prior distribution in Bayes A: the larger the value in the y-axis, the
stronger the shrinkage towards 0. df=4: solid line; df=6: dashed line; df=10: dotted line;
df=1000: thick line, almost horizontal .

Variance ratio ai Case of ridge regression-BLUP
U

000000000000000000
./ 0.9 T \ .
T \ . Gray: 1000 df
i/ 0.8 T \ . Black: 4 df
*/ 07+ \ . Red: 6 df
7/ ! \ . Blue: 10 df
4 0.6 T
e / 1 \ s
. 0.5 T Nt
Py / 4 \ N
S 0.4 T .
o /7 1 N -
o / 1 S
0.3 N
-~ T N
I : | : | : | 02T | | : | | :

N |
5 4 3 2 -1 0 1 2 4 5
NEarker effects



Bayes B as formulated originally

Bayes B assumptions
(Bayesianly strange)

p
point mass at some constant k if o7 = 0

N(O,Gf} if sz > 0

> 0 with probability =
O\l =
. S22 with probabilify 1 — =

bj|6j2 ~ <

3. Recall: if a prior variance
is 0, this means complete

certainty 1. Meuwissen takes the constant = 0O

2. Meuwissen assumes 1T is known, e.g., 0.95



Joint density:

bj = k and o7 = 0 with probability
p(bj,6j2|7'£> = : -
N(0,07 )p(vS2y;?) with probability 1 —

Marginal prior

f b; = k with probability 7

o0

| N(0,62)pS2x;2)do? with probability 1 -

0

p(bjlz) = <

\.



Further

o0

[y F oo -2 ) D) Fena| 25 i

OF
0

j
” 0+ 2 2
_ J-<Gj2>_l—22 exp(— b; +21)S )dojz
0

= F(#) (b} + v82>_%

v+1

bz \ 2
« (1+812) = 1(0,v,5?)
[V

PRIOR = MIXTURE OF A POINT MASS AND OF A t-DISTRIBUTION. BAYES B PUTS
/ THE MASS AT 0 (IF NOT 0, THIS GETS ABSORBED INTO THE GENERAL MEAN)

Then:

/ g
b; = k with probability =
pbjlm) =< " N
t(0,v,S#) with probability 1 — =

MARGINALLY: ALL MARKERS HAVE THE SAME DISTRIBUTION



Mean and variance of a mixture (e.g., Gianola et al. 2006, Genetics)

The first and second moments, and the vanance of a
fimte mixture of K Gaussian distributions, with parame-
ters =[P, ... , P, ys -ov s Pg, O3y --- ,05]", where
the mixture proportons P are such that ZL"_] P, = 1,are

K
) £019) = 5| PN G o m—zw Al
k=1

K K
E{f :j ZP N(y| s []’k dy = ZP;; U’k]
=1

> Var(y|0) ka[rk+zj'kp,i— kap,k )



In Bayes B:

E(bjlz) = nk+ (1 —7)0 = =k
= 0ifk =0

Var(bjln) =nx0+ (1 -x) S_v2

5+ nk?(1 - )

+ k2 + (1 — 7)0% — (nk)?

= (1-m)=2

= (1- >VS

v —

ALL MARKERS HAVE THE SAME PRIOR MEAN AND VARIANCE IN BAYES B!



###FOUR PRIORS FOR BAYES B

###IN ALL CASES PI=0.95

##PRIOR 1 SCALE INVERTED CHI-SQUARE S2=1, nu=4.5
#H#PRIOR 2 SCALE INVERTED CHI-SUQARE S2=1, nu=9
##PRIOR 3 SCALE INVERTED CHI-SQUARE S2=2, nu=4.5
###PRIOR 4 SCALE INVERTED CHI-SQUARE S2=2, nu=9
###IN ALL CASES, CONDITIONAL PRIOR FOR b is N(0O,var)

####HBELOW WE GENERATE SAMPLES FROM T-
DISTRIBUTION

###H##BUT WE SET THE MARKERS TO 0 IF U(0,1)<=0.95
pie=0.95

S2=1

nu=4.5
var<-numeric(25000)
var<-rchisq(25000,nu)
var<-nu*S2/var
b1<-numeric(length(var))
for (i in 1:length(var)){
U=runif(1,0,1)

if (U<=pie) b1[i]=0 else
b1[i]<-rnorm(1,0,sqrt(varfi]))
}

HitHHHE

S2=1

nu=9
var<-rchisq(25000,nu)
var<-nu*S2/var
b2<-numeric(length(var))
for (i in 1:length(var)){
U=runif(1,0,1)

if (U<=pie) b2[i]=0 else
b2[i]<-rnorm(1,0,sqrt(varfi]))
}

HHHHHE
S2=2
nu=4.5

var<-rchisq(25000,nu)
var<-nu*S2/var

b3<-numeric(length(var))

for (i in 1:length(var)){
U=runif(1,0,1)

if (U<=pie) b3[i]=0 else
b3[i]<-rnorm(1,0,sqrt(varf[i]))
}

HHHHHHH

S2=2

nu=9

var<-rchisq(25000,nu)
var<-nu*S2/var

b4<-numeric(length(var))

for (i in 1:length(var)){
U=runif(1,0,1)

if (U<=pie) b4[i]=0 else
b4[i]<-rnorm(1,0,sqrt(varf[i]))
}
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ECDF plot for Bayes B Priors
1=black 2=red 3=blue 4=green

HARD TO SEE DIFFE

RENCES...

Sample values



Cumulative Percent
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ECDF plot for Bayes B Priors
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IMPACT OF 1=0.95 OR 0.80

ECDF plot for Bayes B Priors

Pi=0.95 or 0.80
b95=black b80=red

Zero state

m=0.95 23

m=0.80 19
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Sample values

2 10
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ECDF plot for Bayes B Priors
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b95=black b80=red

= = pr

TAIL BEHAVIOR

L.}

Sample values




Bayes C and C-&t
(code in BGLR)

Habier et al. BMC Bioinformatics 2011, 12:186
http://www.biomedcentral.com/1471-2105/12/186

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

Extension of the bayesian alphabet for genomic
selection

David Habier"", Rohan L Fernando', Kadir Kizilkaya'# and Dorian J Garrick®®



In Bayes B, given the variance of the marker effect and , it is postulated that:

0 with probability x,
~ N(0, ;) with probability (1 — ).

ag\m, O =

In BayesCr, it is postulated that:

In BayesCn, o, = 0, i.e., the priors of all SNP effects
have a common variance, which has a scaled inverse
chi-square prior with parameters v, = 4.2 and S2, where
S2 is derived as for BayesA and BayesB. As a result, the
effect of a SNP fitted with probability (1-7) comes from
a mixture of multivariate student’s t-distributions,
t(0, v,, 1S2) Fo ’s are

Further, it is assumed that the mixture probability & follows a U(0,1) prior distribution



#HH#HTWO PRIORS FOR BAYES C (AT FIXED PI)

##4#P1=0.95 and PI1=0.80

###HPRIOR for non-zero state SCALE INVERTED CHI-SQUARE

S2=2, NU=9

##CONDITIONAL PRIOR FOR b is N(0O,var)

#HHH#BELOW WE GENERATE SAMPLES FROM

MULTIVARIATE T-DISTRIBUTION

pie=0.95

S2=2
nu=9

#tONLY ONE DRAW FROM SCALED INVERTED CHI-

SQUARE
var<-rchisq(1,nu)
var<-nu*S2/var

b95<-numeric(25000)

for (i in 1:length(b95)){
U=runif(1,0,1)

if (U<=pie) b95[i]=0 else
b95[i]<-rnorm(1,0,sqrt(var))
}

pie=0.80
b80<-numeric(25000)

for (i in 1:length(b80)){
U=runif(1,0,1)

if (U<=pie) b80[i]=0 else
b80[i]<-rnorm(1,0,sqrt(var))
}

—

HHAHH

plot(ecdf(b95), verticals=TRUE,
do.p=FALSE,

main="ECDF plot for Bayes C Priors
Pi=0.95 or 0.80

b95=black b80=red ",

xlim=c(-10,10),

xlab="Sample values",

ylab="Cumulative Percent",lty="dashed")

lines(ecdf(b80), verticals=TRUE,
do.p=FALSE,
col.h="red", col.v="red",lty="dotted")
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BAYESIAN LASSO
(code in BGLR)

(Bayes L= double exponential distribution)

p(lA) = Sexp[-Alb— pl

A
2
A exp|=A(b—p)] ifb>pu
2 { exp|—A(p—"0)] ifb<p

2
Elu,A) = p Var (blp, \) = =



In Bayesian Lasso, marker effects are assigned DE conditional
(given a parameter A treated as unknown) prior distributions

£ 1 —/’L‘ﬂ ‘ EACH MARKER HAS THE SAME D.E DISTRIBUTION:
p(ﬁ | /1) — I | — /e JI' NO HETEROGENEOUS VARIANCE OVER
=1 2

MARKERS EITHER

(e}
o

04

Marker effects are even more
strongly shrunk to O

=» Produces a “quasi-sparse

model

= Prior of lambda must be S 7

chosen carefully. Avoid flat
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Graphical Representation of the hierarchical structures of the Bayesian LASSO
and Bayes A

Bayesian LASSO
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#Simulating marker effects from a double exponential (Laplace)
#distribution with parameter lambda

#NOTE: in R, lambda is the reciprocal of the lambda described
earlier

#Enter lambda and S=sample size

lambda<-2

S<-250000

#Simulate S exponential numbers with parameter 1/lambda [due to
parameterization in R]

expnums<-rexp(S,1/lambda)

#Simulate S signs from a fair coin
signs<-sign(runif(S)-0.5)

#simulate Laplace numbers
b2<-signs*expnums

#Enter lambda and S=sample size

lambda<-10
S<-250000

#Simulate S exponential numbers with parameter 1/lambda [due to
parameterization in R]

expnums<-rexp(S,1/lambda)
#Simulate S signs from a fair coin
signs<-sign(runif(S)-0.5)
#simulate Laplace numbers

b10<-signs*expnums



HERHIH ]

plot(density(b2),

main="Density plot for DE Priors
lambda=2 or 10

b2=black b10=red ",
xlim=c(-10,10),

xlab="Sample values",
ylab="Density",Ity="dashed")

lines(density(b10),
col="red",Ilty="dotted")

HitH#

plot(ecdf(b2), verticals=TRUE, do.p=FALSE,
main="ECDF plot for DE Priors

lambda=2 or 10

b2=black b10=red ",

xlim=c(-10,10),

xlab="Sample values",

ylab="Cumulative Percent",Ilty="dashed")

lines(ecdf(b10), verticals=TRUE, do.p=FALSE,
col.h="red", col.v="red",lty="dotted")
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ECDF plot for DE Priors
lambda=2 or 10
b2=black b10=red
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#Simulate marginal of marker effects when lambda
#follows a Uniform(LO,UP) distribution
#enter S LO and UP

S$<-25000
LO<-0
UP<-20

lambda<-numeric(S)
expnumb<-numeric(S)
buni<-numeric(S)
sign<-numeric(S)

#simulate b given lambda as
#expnumbs<-rexp(S,lambda)
#signs<-sign(runif(S)-0.5)
#x<-signs*expnums

for (iin 1:S) {

lambdali]<-runif(1,LO,UP)
expnumbli]<-rexp(1,lambdali])
signli]<-sign(runif(1)-0.5)
buni[i]<-sign[i]*expnumbli] }

HHHHHHH AR

S<-25000
LO<-0
UP<-10

lambda<-numeric(S)
expnumb<-numeric(S)
buni10<-numeric(S)
sign<-numeric(S)

#simulate b given lambda as
#expnumbs<-rexp(S,lambda)
#signs<-sign(runif(S)-0.5)
#x<-signs*expnums

for (iin 1:S) {
lambdali]<-runif(1,LO,UP)
expnumbli]<-rexp(1,lambdali])
signli]<-sign(runif(1)-0.5)
buni10[i]<-sign[i]*expnumbli] }
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EXAMINING SHRINKAGE IN
THE BAYESIAN LASSO



Mode of the conditional posterior distribution in Bayes L. As a side note, consider what happens if

1t 13 not 1gnored that ‘W;l = Diag {Bl—} 15 a random matrix, contrary to what was done by Tibshirani (1996)
td

) . g2 .
in a modal representatjon of Bayes L. Recalling that |5;| = |—3L| and that %%l = sign(z)
I

g [ 6 26:. B 28,
18| = — (—J) = — L — —sign(A.) = =% — sign(3;).
g. "4 3.5_;- |,5_,-| |.3_,'| |-'3_;'|2 ! |-B.J'| !

spect to 3
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where s3 15 a vector containing the signs of the elements of 3. Here, the first-order condition would lead to the

iteration )
— A
(X'X+o2aW ) B = X'y + sl
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Table 1. Summary of the simulated and experimental datasets for grain dry matter yield (GDY) and grain
dry matter content | GIDNC). Represented are the number of polymorphic single nuclectide polymorphism
markers (no. SNFP), number of polymorphic quantitative trait loc in the simulated datasets (no. QTL),
number of lines (n) and the trait heritability (h*). U represents an unknown mumber of QTL.

no. SNP no. QTL n B2
Simmulated datasets

malzed 1117 SiK) 1250 0.46
maizel 7425 360 1250 0.64
Expenmental dataset
GO 11646 u 698 074
G 11646 u 698 094

4.1 Hellinger distance
The Hellinger distance H(f, g) (Le Cam, 1986), which 15 also used in Roos and Held (2011) to
evaluate the sensitivity of models with respect to the choice of prior distnbtions, measures the

distance between two densities f and g:

H(f.q) = 1“'% [ (VF@ - Vo) . (412)

H(f.g) 15 a symmetne messure, which takes its maximum value of 1, if the density f assigns
probability 0 to every data point to which g assigns a positive value, and vice versa. The mimmum

value of H 150, 1f f = g. of



Simulated data sets
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Fig. 2. Distribution of Hellinger distance between the marginal prior and the posterior densities of
marker effects @ from different model scenarios, calculated with simulated dataset maizeA. Each boxplot
displays the distribution of Hellinger distances of the 1117 marker effects out of each model.
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Improving accuracy of genomic predictions within and between dairy cattle
breeds with imputed high-density single nucleotide polymorphism panels
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ABSTRACT

Achieving accurate genomic estimated breeding val-
ues for dairy cattle requires a very large reference popu-
lation of genotyped and phenotyped individuals. As-
sembling such reference populations has been achieved
for breeds such as Holstein, but is challenging for breeds
with fewer individuals. An alternative is to use a multi-
breed reference population, such that smaller breeds
gain some advantage in accuracy of genomic estimated
breeding values (GEBV) from information from larger
breeds. However, this requires that marker-quantitative
trait loci associations persist across breeds. Here, we as-
sessed the gain in accuracy of GEBV in Jersey cattle as a
result of using a combined Holstein and Jersey reference
population, with either 39,745 or 624,213 single nucleo-
tide polymorphism (SNP) markers. The surrogate used
for accuracy was the correlation of GEBV with daugh-
ter trait deviations in a validation population. Two
methods were used to predict breeding values, either
a genomic BLUP (GBLUP_mod), or a new method,
BayesR, which used a mixture of normal distributions
as the prior for SNP effects, including one distribution
that set SNP effects to zero. The GBLUP_mod method
scaled both the genomic relationship matrix and the
additive relationship matrix to a base at the time the
breeds diverged, and regressed the genomic relationship
matrix to account for sampling errors in estimating
relationship coefficients due to a finite number of mark-
ers, before combining the 2 matrices. Although these
modifications did result in less biased breeding values

for Jerseys compared with an unmodified genomic
relationship matrix, BayesR gave the highest accura-
cies of GEBYV for the 3 traits investigated (milk yield,
fat yield, and protein yield), with an average increase
in accuracy compared with GBLUP_mod across the
3 traits of 0.05 for both Jerseys and Holsteins. The
advantage was limited for either Jerseys or Holsteins
in using 624,213 SNP rather than 39,745 SNP (0.01 for
Holsteins and 0.03 for Jerseys, averaged across traits).
Even this limited and nonsignificant advantage was
only observed when BayesR was used. An alternative
panel, which extracted the SNP in the transcribed part
of the bovine genome from the 624,213 SNP panel (to
give 58,532 SNP), performed better, with an increase
in accuracy of 0.03 for Jerseys across traits. This panel
captures much of the increased genomic content of the
624,213 SNP panel, with the advantage of a greatly
reduced number of SNP effects to estimate. Taken to-
gether, using this panel, a combined breed reference
and using BayesR rather than GBLUP_mod increased
the accuracy of GEBV in Jerseys from 0.43 to 0.52,
averaged across the 3 traits.

Key words: genomic selection, multiple breeds

INTRODUCTION

To accurately predict genomic breeding values for
selection candidates with no phenotype of their own,
a very large reference population of genotyped and
phenotyped individuals is required to derive the predic-
tion equation (Goddard, 2009; VanRaden et al., 2009;
Brgndum et al., 2011). Although this has been achieved



4.5 Bayes R

Erbe et al. (2012) presented this method as follows. Bayes R starts the hierarchical model with (1) and poses

a mixture of four zero-mean normal distributions as a conditional prior for a specific SNP effect:

WHY THIS AND NOT SOMETHING ELSE?

}?(:j‘|g%] z{]"‘% 21[}_4 5, =107 EJZ 7’ =10 ?cr T, Ty, g, T ’M)

= m x0+mN (60,107 2]-|—r3 7(610,107% 2)+r4 7 (810,107%7) . (23)

Here, 1f the SNP effect 15 generated from the first component of the mixture (with probability ;) it will be 0
with complete certainty; if drawn from the second component it will have a normal distribution with null mean
and variance -::r:‘;u = 10_4531 and so on. In Bayes R, G’E = 127 i3 the "assumed genetic variance”, r° is the
"assumed reliability" and o is the variance of the target trait. Presumably, the assumption about r* is either
model derived or based on prior cross-validation information, which 15 good Bayesian behavior, normatively.
Makowsky et al. (2011) gave evidence that what one assumes about genetic variance from inference in training

data 15 not recovered 1n cross-validation.

E(B) CLEARLY 0 FOR ALL MARKERS




Var (8|m) = (ma x 107 + 73 x 107° + 74 x 107%) o>

Further.
Var (8) = E. [Var (8|m)] + Var, [E(3|m)] = Ex [Var (8|7)].

Erbe et al. (2012) used a Dirichlet distribution with parameter vector o =[ul,r:rg.a3._u_1}’ as prior for the

elements of . so that

] 10~ 1077 1072
Var (8la) = E. |Var (_;5’_§|1T}] — ( &?: +ﬂ3 _:_ @) .:r_‘z_
- : ] + s + ag + g

(24)

In particular, Erbe et al. (2012) took a1 = a3 = agz = a4 = 1, producing a uniform distribution on 7. It follows

that all SNPs have the same marginal prior distribution, with null mean, and variance

Var (3;|c) r'o’ 1+ 1 + ! L2,
Tar | G- — — = ro.
i 400 10 100/ 4x104 Variance same

This suggests that a simple ridge-regression ELUP obtained by solving for all markers

D’E () + o + g +-|:L_1_:I'
(1 0~ %as + 10 3az + 'll:i_zr:u}

X'X + 53 } B=Xy.

may deliver predictive abilities that are similar to those of Bayes R, except that 1t would differ with respect to

Bayes R on how marker effects are shrunk.



SHRINKAGE IN BAYES R

Insight on how shrinkage takes place in Bayes R 1s gained by inspecting the joint posterior density of all

marker effects, given r2, o2 and . Here

p (Bly, 7., 0%)

o (- =X

]
o ) [] [71 x 04+ maN (8;]0,03) + 7aN (5;10,03) + 74N (3;]0.03)] . (25)

=1
2
3

where CF% = T?crzlﬂ_'l,a r?g? 1077 and cr4 = r2g? 1072 (these values can be modified a piacere). Taking

derivatives of the log-posterior with respect to 3 gives (apart from an additive constant)

5 4 R’
Z Fiﬁ;‘-‘% (8;]0,07)
d 2 2 1 r / i=2
—1 LTLTE =— Xy —XX 26
5 o8 [P (B ™7 )] = S5 (Xy = XXB) 4\ 2o B10.%) + 7ot (310,03 F maa (0,57 [ 2

. e

where {_} denotes a p x 1 vector. Above, &;(5;/0.07) (z = 2,3.4) is the density of 5; under the normal

distribution corresponding to component ¢ of the mixture, with

b (8]0, o2
it‘} {ﬁ_ln_o_g}z_'ﬂa( .i'| Ja}ﬂ

ag; "\l oz I

(3

Employing the preceding expression in egquation (26) yields



z 3 |ﬂ4:r
r, 2ilEi07: )
d 1 =
@ log [ {,H|1T__'r2__crﬂ}] = (F) {X’y—}f}{_ﬁ} -1 2 B;
) Z magy; {.5.;'|':'- CF;?}
L 1=2

Setting this to zero and rearranging leads to iteration

_ﬁ[t-'_ll = (K;K‘I‘ﬂs[z]) XJ]T,

where (2 1s a p X p diagonal matrix with typical element

4

Z mwich, (_5_[;-#]“]',1?3) ;l; ,

ol _ _2i=2 "Mt %
.:'.:'..'5 — e 3 o Z g2

Z Ti®; (SEt] 0, r:rf) =2 '

a;
=2

where

walh; (S[Tt] 0, r:r?)

Z’I’z_ifj (3[]|{] a? )

=2

—'[*]{3} i=1.2. .. 4and j=1,2 ....p

3 =7
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Prediction Analysis of Complex Traits Using
Bayesian Mixture Model
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R.Wray', Peter M. Visscher'*



Abstract

Gene discovery, estimation of heritability captured by SNP arrays, inference on genetic ar-
chitecture and prediction analyses of complex traits are usually performed using different
statistical models and methods, leading to inefficiency and loss of power. Here we use a
Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic
variance explained by all variants and prediction of unobserved phenotypes in new sam-
ples. We apply the method to simulated data of quantitative traits and Welcome Trust Case
Control Consortium (WTCCC) data on disease and show that it provides accurate estimates
of SNP-based heritability, produces unbiased estimators of risk in new samples, and that it
can estimate genetic architecture by partitioning variation across hundreds to thousands of
SNPs. We estimated that, depending on the trait, 2,633 to 9,411 SNPs explain all of the
SNP-based heritability in the WTCCC diseases. The majority of those SNPs (>96%) had
small effects, confirming a substantial polygenic component to common diseases. The pro-
portion of the SNP-based variance explained by large effects (each SNP explaining 1% of
the variance) varied markedly between diseases, ranging from almost zero for bipolar disor-
der to 72% for type 1 diabetes. Prediction analyses demonstrate that for diseases with
major loci, such as type 1 diabetes and rheumatoid arthritis, Bayesian methods outperform
profile scoring or mixed model approaches.
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Improved precision of QTL mapping using a
nonlinear Bayesian method in a multi-breed
population leads to greater accuracy of
across-breed genomic predictions

Kathryn E Kemper'", Coralie M Reich?, Philip J Bowman?, Christy J vander Jagt?, Amanda J Chamberlain?,
Brett A Mason?, Benjamin J Hayes®** and Michael E Goddard'*

Abstract

Background: Genomic selection is increasingly widely practised, particularly in dairy cattle. However, the accuracy
of current predictions using GBLUP (genomic best linear unbiased prediction) decays rapidly across generations,
and also as selection candidates become less related to the reference population. This is likely caused by the effects
of causative mutations being dispersed across many SNPs (single nucleotide polymorphisms) that span large
genomic intervals. In this paper, we hypothesise that the use of a nonlinear method (BayesR), combined with a
multi-breed (Holstein/Jersey) reference population will map causative mutations with more precision than GBLUP
and this, in tumn, will increase the accuracy of genomic predictions for selection candidates that are less related to
the reference animals.

Results: BayesR improved the across-breed prediction accuracy for Australian Red dairy cattle for five milk yield and
composition traits by an average of 7% over the GBLUP approach (Australian Red animals were not included in the
reference population). Using the multi-breed reference population with BayesR improved accuracy of prediction in
Australian Red cattle by 2 — 5% compared to using BayesR with a single breed reference population. Inclusion of
8478 Holstein and 3917 Jersey cows in the reference population improved accuracy of predictions for these breeds
by 4 and 5%. However, predictions for Holstein and Jersey cattle were similar using within-breed and multi-breed
reference populations. We propose that the improvement in across-breed prediction achieved by BayesR with

the multi-breed reference population is due to more precise mapping of quantitative trait loci (QTL), which was
demonstrated for several regions. New candidate genes with functional links to milk synthesis were identified

using differential gene expression in the mammary gland.

Conclusions: QTL detection and genomic prediction are usually considered independently but persistence of
genomic prediction accuracies across breeds requires accurate estimation of QTL effects. We show that accuracy of
across-breed genomic predictions was higher with BayesR than with GBLUP and that BayesR mapped QTL more
precisely. Further improvements of across-breed accuracy of genomic predictions and QTL mapping could be
achieved by increasing the size of the reference population, including more breeds, and possibly by exploiting
pleiotropic effects to improve mapping efficiency for QTL with small effects.
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RECALL.:
If two priors lead to two
different posteriors,
informatiois scant.

NOTE:
Bayes R*flattens” to 0, most
marker effects? What
About the quest for
Small-effect variants?

REMARK:
No model comparisons at
all. For example, does
Bayes R receive more
support than Bayes A?



DO YOU LIKE
MIXTURES?

If there are variants with
large effects (e.g., HDL)
feature selection makes sense




_McLachlan and Peel (2000) give a wam-

ing: estimation of the parameters of a mixture (W) on the
basis of data are meaningful only if ¥ is likelihood identifi-
able. In Bayes RS (apart from nuisance effects and the re-
sidual variance) the number of unknown parameters is 2p +

4S. Here, 2p comes from the fact that each
assigned a distinct variance; the 4S comes from t
there are S segments each having four segment-s

marker is
ne fact that
pecific mix-

ing probabilities (s = 1, 2, ..., S). Unfortunate

y, n < <<

2p + 4S5, and this creates a huge identification deficit rela-
tive to the information content in a sample of size n. In

Finite Mixture




i

a Bayesian context, there is the additional issue (occurring
even when n = p) called label switching, leading Celeux
et al. (2000) to write: “Although somewhat presumptuous,
we consider that almost the entirety of Markov chain Monte
Carlo samplers for mixture models has failed to converge!”
In view of these pitfalls, one wonders what meaningful
mechanistic sense can be extracted from these richly param-
eterized specifications intended to inform about genetic
architecture.

Celeux, G., M Hum, ﬂrldJC. Rnbeft? 2000 CDIillletEltimlﬂl and in-
ferential difficulties with mixture posterior distributions. J. Am.
Stat. Assoc. 95: 957-979.



WILD IDEAS:

(open the umbrella...)

* Some friends in animal breeding
promoting mixtures with zillions of markers
are getting wild (for discovery purposes)

* Most mixtures fail to converge, plus there
Is severe under-identification problem: will
never discover small effect variants

* Mixtures can be dangerous (like mixing
drinks!)



Take home message about the alphabet:

(for n<<p)

ABSTRACT Wholegenome enabled prediction of complex traits has recened enarmous attention in animal and plant breeding and &
making inroads irto human and even Drosopfula genetics. The term “Bayesian alphabet ™ denates a growing number of letters of the
alphabet wed to denote vanous Bayesian hnear regressions that differ in the prors adopted, while shanng the same sampling maodel.
We axplore the rale of the pror distnbubion in whole-genome regression modeks for desecting complex trats in what & now a dandard

situation with genomic data where the number of unknown parameters (o) typically exceeds sample size (n). Members of the alphabet
aim to confront the overparameterzation in vanous manners, but t & shown here that the pror & always influential, unless n e p. The

happens becawse parameters are not likelihood identified, so Bayesian learming 15 imperfect. Since inferences are not devoid of the
influence of the pnor, daims about genetic architecture from these methods should be taken with caution. Howewer, all such
pracedures may deliver reasonable predichions of complex tras, provided that some parameters ("tuning knots™) are assessed wa
a praperly conducted crosswvalidation. It 15 concluded that members of the alphabet have a reom in wholegenome prediction of
phenotypes, but have somewhat doubtful inferential value, at least when sample size & such that n < p.

Inferences about “genetic architecture’

ELEARN HOW TO
s
LOTTERIES winning The

Prediction of overall genetic signal:




