
GENOME-ENABLED PREDICTION
WITH THE BAYESIAN ALPHABET

BAYES A, BAYES B, Bayes C-pi,
BAYESIAN LASSO, BAYES R

(many other methods. These are prototypical)

Gianola, D., G. de los Campos, W. G. Hill, E. Manfredi, and R. Fernando (2009) 
Additive genetic variability and the Bayesian alphabet. Genetics 183: 347-363.

Gianola, D. (2013) Priors in whole-genome regression: the Bayesian alphabet
returns. Genetics 194: 573-596





CRUCIAL CONTRIBUTIONS OF 
THE PAPER

• Use all markers in a linear regression model as 
opposed to just a few ones

• Shift attention from a doubtful emphasis on QTL 
(now superseded by the GWAS obsession) 
search to genome-enabled prediction

• Hint at the possibility of obtaining earlier and 
more accurate predictions of genetic values

• Use of cross-validation: something that had not 
received much emphasis before (Utz et al. 2000 
in plant breeding)



WE ARRIVED TOO LATE….



Genome-enabled prediction
using linear regression 

models
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STARTED IN ANIMAL BREEDING BUT 
PLANT BREEDERS EMBRACED IT WITH JOY!!

Effect of chromosomal segment
alleles, haplotypes

SNP effects combined
additively

Meuwissen, Hayes and Goddard (2001): 
“Genomic selection”
Perhaps better terms:

“Genome-enabled selection”
“Genome-assisted selection” 

PREFER NOT TO USE “Genomic prediction”

QUESTIONS: 
ABANDON QTLS, PEDIGREES, KNOWN GENES?

“Whole-genome prediction” (whole or part? Variable selection?)

Prototypical linear regression model (no nuisance parameters)
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THE DESIGN OF METHODS 
FOR PREDICTION IS 

SOMEWHAT “DIFFERENT”
THAN FOR INFERENCE
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p|y  ∑ p|y, MpM|y

 ∑ p|y, MpM|ydM

Var|y  EMVar|y,M  VarEM|y,M

TAKING MODEL UNCERTAINTY INTO ACCOUNT BY MODEL AVERAGING

VARIANCE OF PREDICTAND TAKING MODEL UNCERTAINTY INTO ACCOUNT

Average “prediction
Error” variance

Variance among predictions
from different models

IS MODEL M “RIGHT”? θ CAN BE A FUTURE PHENOTYPE

FEW MODELS

MANY MODELS
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Posterior probability or density
of modelPosterior distribution or density for model M

Posterior after
Accounting for model
uncertaintiy



CROSS-VALIDATION (CV)
• Data available (genomic, phenotypic)
• Data generated according to unknown process
• Split into training (fitting)- testing (predictand) sets
• Fitting process describes current data (model is 

typically wrong). Sample may be idiosyncratic
• Use training process to make statement about yet-

to-be observed data (testing set)
• Prediction error (conditional and unconditional): 

point estimate is obtained
• Distribution of prediction errors (conditional or 

unconditional): interval estimate. For this, CV must
be replicated 9



ILLUSTRATION OF A 4-FOLD CROSS-VALIDATION (red: testing set; white: training set)

Test

Test

Test

Test

Train Train Train

Train Train

Train

Train

Train

Train

Train

Train Train

Important

This is a single-realization from 
the CV distribution.  Repeat many 
times! (data structure issues here)
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CROSS-VALIDATION
seldom done in animal breeding in the pre-genomic era. Often 

absent in GWAS and medical studies)

A. Prediction and goodness of fit are 
different: a model that fits well to training data 
may predict badly. A mechanistically poor 
model can give better predictions that “fancier” 
models
B. Any cross-validation scheme (e.g., k-
folds) has a cross-validation distribution

THIS IS THE DISTRIBUTION THAT MATTERS AND NOT
THAT BASED ON THEORETICAL CONSIDERATIONS

FROM SOME MODEL 



GOODNESS OF FIT (TRAINING= TRN) vs. PREDICTIVE ABILITY (TESTING= TST)

HUMAN STATURE: MAKOWSKY et al. , Plos Genetics 2011
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CROSS-VALIDATION UNCERTAINTY AND IMPACT OF LAYOUT:
2294 dairy bulls with progeny tests (“TBV”)

(Erbe et al. 2010)

A= pedigree based kinship matrix
G= genomic similarity matrix
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Density of a standard normal random variable (black), of a double‐exponential random variable (blue) and of a random variable 
following a mixture density with a mass point at zero (with probability 0.8) and a Gaussian process with probability 0.2. All variables 

with zero mean and variance equal to one. 

“THE BAYESIAN ALPHABET”
Series of Bayesian multiple linear regression models

that just differ in the conditional prior adopted at some level of the hierarchical model. All
such priors and hyper-parameters INFLUENCE inference whenever n<<p

and sometimes predictive performance as well

EXAMPLES
-Bayesian BLUP (Gaussian conditional prior)
-Bayesian Lasso (double exponential conditional prior)
-Bayes C-π (mixture conditional prior with Gaussian component 
and unknown π )
-Bayes A (t-prior)
-Bayes B (mixture conditional prior with t- component and know π
-Bayes R, RS, RC even greedier mixtures 

DE: thick tailed and leptokurtic
t: thIck tailed



IMPORTANT ISSUE HERE:

The Bayesian statement about 
marker effects is the marginal
and not the conditional prior!



HIERARCHICAL MODEL: SUPPOSE 1 ARE MARKER EFFECTS
MODEL INVOLVES: 1,2,3,4

p1,2,3,4|H
 p1|2,3,4,Hp2|3,4,Hp3|4,Hp4,H

p1|H

    p1|2,3,4,Hp2|3,4,Hp3|4,Hp4,Hd2d3d4

What are your Bayesian beliefs about marker effects?

Your Bayesian beliefs about marker effects depends
on the values of θ2, θ3 and θ4 

Since you are also uncertain about θ2, θ3 and θ4, your 
beliefs about markers are conveyed by the marginal prior



THE CURSE OF THE BAYESIAN 
ALPHABET



CAN FIT MOST MEMBERS OF THE “ALPHABET WITH THIS R PACKAGE



BAYES A + BAYES B
(both pose the same data-generating model)

(as I understand these two methods)



y  1  Xb  e,
y|, X, b  N1  Xb, Ie

2 

Linear model proposed by Meuwissen et al. (2001)

Additive substitution
effect of
SNP j

Code for genotype
of SNP j:
x= -1,0,1

SCALAR

MATRIX

yi   ∑
j1

p

xijbj  ei,

i  1,2, . . . ,n; n  p

yi|,xi,b,e
2  N  ∑

j1

p

xijbj,e
2



The priors for Bayes A

Hyper-parameters, specified arbitrarily
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−2; j  1,2,.. . ,p

Note: this is a conditional prior
Not true that each marker has different prior
(as claimed in Meuwissen et al. (2001))
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(Meuwissen et al., 2001)
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Marginal prior

The prior of a marker
effect is a t-distribution
with known scale and df

These hyper-parameters
will control the extent
of shrinkage. Question:
does their influence vanish
asymptotically?

MARGINALLY: IN BAYES A ALL MARKERS HAVE THE SAME VARIANCE

Kernel of Gaussian



###FOUR PRIORS FOR BAYES A

###PRIOR 1 SCALE INVERTED CHI-SQUARE S2=1, nu=4.5
###PRIOR 2 SCALE INVERTED CHI-SUQARE S2=1, nu=9
###PRIOR 3 SCALE INVERTED CHI-SQUARE S2=2, nu=4.5
###PRIOR 4 SCALE INVERTED CHI-SQUARE S2=2, nu=9
###IN ALL CASES, CONDITIONAL PRIOR FOR b is N(0,var)

#######
S2=2
nu=4.5

var<-rchisq(25000,nu)
var<-nu*S2/var

b3<-numeric(length(var))

for (i in 1:length(var)){
b3[i]<-rnorm(1,0,sqrt(var[i]))
}
#######
S2=2
nu=9

var<-rchisq(25000,nu)
var<-nu*S2/var

b4<-numeric(length(var))

for (i in 1:length(var)){
b4[i]<-rnorm(1,0,sqrt(var[i]))
}

###FOUR PRIORS FOR BAYES A

###PRIOR 1 SCALE INVERTED CHI-SQUARE S2=1, nu=4.5
###PRIOR 2 SCALE INVERTED CHI-SUQARE S2=1, nu=9
###PRIOR 3 SCALE INVERTED CHI-SQUARE S2=2, nu=4.5
###PRIOR 4 SCALE INVERTED CHI-SQUARE S2=2, NU=9
###IN ALL CASES, CONDITIONAL PRIOR FOR b is N(0,var)

######
S2=1
nu=4.5
var<-numeric(25000)
var<-rchisq(25000,nu)
var<-nu*S2/var

b1<-numeric(length(var))

for (i in 1:length(var)){
b1[i]<-rnorm(1,0,sqrt(var[i]))
}
#######
S2=1
nu=9

var<-rchisq(25000,nu)
var<-nu*S2/var

b2<-numeric(length(var))

for (i in 1:length(var)){
b2[i]<-rnorm(1,0,sqrt(var[i]))
}



S2=1
nu=4.5

S2=1
nu=9

S2=2
nu=4.5

S2=2
nu=9



A Gibbs sampler for Bayes A
(see BGLR)

(element-wise sampling)
Note: the form of the implementation is just an 

algorithmic matter: it is immaterial with 
respect to model-related issues



Sampling the mean

Flat prior for the mean (or for the fixed effects) is not influential
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Sampling the residual variance

e
2|ELSE  n1  e
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The prior can be “killed” simply by increasing sample size

Goes to n

This will dominate the weighted average
as n increases
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Sampling the marker effects

Kill the prior simply by increasing sample size. The effect of the shrinkage ratio vanishes

∑
i1

n

xij
2  e

2

bj
2 →∑

i1

n

x ij
2



Sampling the variance of the marker effects

•Prior cannot be killed here. Can increase number of data points or of 
markers ad nauseum and gain only one degree of freedom, always
•Recall that, in the conditional posterior, all other parameters are known (i.e., 
they are assigned values)
•Since one must de-condition, actually the true posterior moves “less than
one degree of freedom” away from the prior
•Meuwissen et al. (2001) mistakenly thought that learning about would 
inform about “genetic variance architecture” 

Prior df: very influential

Typically very small
bj
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A WAY OF LOOKING AT SHRINKAGE OF 
MARKER EFFECTS IN BAYES A

Gianola (2013)

Markers with tiny effects are 
shrunk strongly)



Impact of marker effect and of degrees of freedom (df) on shrinkage towards
prior distribution in Bayes A: the larger the value in the y-axis, the

stronger the shrinkage towards 0. df=4: solid line; df=6: dashed line; df=10: dotted line; 
df=1000: thick line, almost horizontal .
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Bayes B as formulated originally

Bayes B assumptions
(Bayesianly strange)

1. Meuwissen takes the constant =  0

bj |j
2 

point mass at some constant k if j
2  0

N 0,j
2 if  j

2  0

j
2| 

0 with probability 
S2

−2 with probability 1 − 

2. Meuwissen assumes π is known, e.g., 0.95

3. Recall: if a prior variance
is 0, this means complete
certainty
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Marginal prior
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Further

pbj | 
bj  k with probability 

t0,,S2  with probability 1 − 

Then:
PRIOR = MIXTURE OF A POINT MASS AND OF A t-DISTRIBUTION. BAYES B PUTS
THE MASS AT 0 (IF NOT 0, THIS GETS ABSORBED INTO THE GENERAL MEAN)

MARGINALLY: ALL MARKERS HAVE THE SAME DISTRIBUTION



Mean and variance of a mixture (e.g., Gianola et al. 2006, Genetics)



Ebj|  k  1 − 0  k

 0 if k  0

In Bayes B:

Varbj |    0  1 −  S2
 − 2  k 2  1 − 02 − k2

 1 −  S2
 − 2  k 21 − 

 1 −  S2
 − 2 if k  0

ALL MARKERS HAVE THE SAME PRIOR MEAN AND VARIANCE IN BAYES B!



###FOUR PRIORS FOR BAYES B
###IN ALL CASES PI=0.95
###PRIOR 1 SCALE INVERTED CHI-SQUARE S2=1, nu=4.5
###PRIOR 2 SCALE INVERTED CHI-SUQARE S2=1, nu=9
###PRIOR 3 SCALE INVERTED CHI-SQUARE S2=2, nu=4.5
###PRIOR 4 SCALE INVERTED CHI-SQUARE S2=2, nu=9
###IN ALL CASES, CONDITIONAL PRIOR FOR b is N(0,var)

####BELOW WE GENERATE SAMPLES FROM T-
DISTRIBUTION
####BUT WE SET THE MARKERS TO 0 IF U(0,1)<=0.95
pie=0.95

S2=1
nu=4.5
var<-numeric(25000)
var<-rchisq(25000,nu)
var<-nu*S2/var
b1<-numeric(length(var))
for (i in 1:length(var)){
U=runif(1,0,1)
if (U<=pie) b1[i]=0 else
b1[i]<-rnorm(1,0,sqrt(var[i]))
}

#####
S2=1
nu=9
var<-rchisq(25000,nu)
var<-nu*S2/var
b2<-numeric(length(var))
for (i in 1:length(var)){
U=runif(1,0,1)
if (U<=pie) b2[i]=0 else
b2[i]<-rnorm(1,0,sqrt(var[i]))
}

#######
S2=2
nu=4.5

var<-rchisq(25000,nu)
var<-nu*S2/var

b3<-numeric(length(var))

for (i in 1:length(var)){
U=runif(1,0,1)
if (U<=pie) b3[i]=0 else
b3[i]<-rnorm(1,0,sqrt(var[i]))
}
#######
S2=2
nu=9

var<-rchisq(25000,nu)
var<-nu*S2/var

b4<-numeric(length(var))

for (i in 1:length(var)){
U=runif(1,0,1)
if (U<=pie) b4[i]=0 else
b4[i]<-rnorm(1,0,sqrt(var[i]))
}



HARD TO SEE DIFFERENCES…



TAIL BEHAVIOR



IMPACT OF π=0.95 OR 0.80

Zero state

π=0.95 23750/25000

π=0.80 19918/25000



TAIL BEHAVIOR



Bayes C and C-π
(code in BGLR)



In Bayes B, given the variance of the marker effect and , it is postulated that:

In BayesCπ, it is postulated that:

Further, it is assumed that the mixture probability π follows a U(0,1) prior distribution



###TWO PRIORS FOR BAYES C (AT FIXED PI)
###PI=0.95 and PI=0.80
###PRIOR for non-zero state SCALE INVERTED CHI-SQUARE 
S2=2, NU=9
###CONDITIONAL PRIOR FOR b is N(0,var)

####BELOW WE GENERATE SAMPLES FROM 
MULTIVARIATE T-DISTRIBUTION

pie=0.95

S2=2
nu=9

##ONLY ONE DRAW FROM SCALED INVERTED CHI-
SQUARE
var<-rchisq(1,nu)
var<-nu*S2/var

b95<-numeric(25000)

for (i in 1:length(b95)){
U=runif(1,0,1)
if (U<=pie) b95[i]=0 else
b95[i]<-rnorm(1,0,sqrt(var))
}

pie=0.80
b80<-numeric(25000)

for (i in 1:length(b80)){
U=runif(1,0,1)
if (U<=pie) b80[i]=0 else
b80[i]<-rnorm(1,0,sqrt(var))
}

########
plot(ecdf(b95), verticals=TRUE, 
do.p=FALSE,
main="ECDF plot for Bayes C Priors 
Pi=0.95 or 0.80 
b95=black b80=red ",
xlim=c(-10,10),
xlab="Sample values", 
ylab="Cumulative Percent",lty="dashed")

lines(ecdf(b80), verticals=TRUE, 
do.p=FALSE,
col.h="red", col.v="red",lty="dotted")





BAYESIAN LASSO
(code in BGLR)

(Bayes L= double exponential distribution)
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In Bayesian Lasso, marker effects are assigned DE conditional
(given a parameter λ treated as unknown) prior distributions
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Density of a Normal and of a Double-Exponential Distribution

EACH MARKER HAS THE SAME D.E DISTRIBUTION:
NO HETEROGENEOUS VARIANCE OVER
MARKERS EITHER

Marker effects are even more
strongly shrunk to 0

Produces a “quasi-sparse”
model
Prior of lambda must be
chosen carefully. Avoid flat
prior
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#Simulating marker effects from a double exponential (Laplace) 
#distribution with parameter lambda 
#NOTE: in R, lambda is the reciprocal of the lambda described 
earlier

#Enter lambda and S=sample size
lambda<-2
S<-250000

#Simulate S exponential numbers with parameter 1/lambda [due to 
parameterization in R]

expnums<-rexp(S,1/lambda)

#Simulate S signs from a fair coin
signs<-sign(runif(S)-0.5)

#simulate Laplace numbers
b2<-signs*expnums

#Enter lambda and S=sample size

lambda<-10
S<-250000

#Simulate S exponential numbers with parameter 1/lambda [due to 
parameterization in R]

expnums<-rexp(S,1/lambda)

#Simulate S signs from a fair coin

signs<-sign(runif(S)-0.5)

#simulate Laplace numbers

b10<-signs*expnums



########

plot(density(b2),
main="Density plot for DE Priors 
lambda=2 or 10 
b2=black b10=red ",
xlim=c(-10,10),

xlab="Sample values", 
ylab="Density",lty="dashed")

lines(density(b10),
col="red",lty="dotted")

####
plot(ecdf(b2), verticals=TRUE, do.p=FALSE,
main="ECDF plot for DE Priors 
lambda=2 or 10 
b2=black b10=red ",
xlim=c(-10,10),

xlab="Sample values", 
ylab="Cumulative Percent",lty="dashed")

lines(ecdf(b10), verticals=TRUE, do.p=FALSE,
col.h="red", col.v="red",lty="dotted")



Smaller lambda
In our parameterization



Smaller lambda
In our parameterization



##################################################

#Simulate marginal of marker effects when lambda 
#follows a Uniform(LO,UP) distribution
#enter S   LO and UP

S<-25000
LO<-0
UP<-20

lambda<-numeric(S)
expnumb<-numeric(S)
buni<-numeric(S)
sign<-numeric(S)

#simulate b given lambda as
#expnumbs<-rexp(S,lambda)
#signs<-sign(runif(S)-0.5)
#x<-signs*expnums

for (i in 1:S) {
lambda[i]<-runif(1,LO,UP)
expnumb[i]<-rexp(1,lambda[i])
sign[i]<-sign(runif(1)-0.5)
buni[i]<-sign[i]*expnumb[i]  }
#################################

S<-25000
LO<-0
UP<-10

lambda<-numeric(S)
expnumb<-numeric(S)
buni10<-numeric(S)
sign<-numeric(S)

#simulate b given lambda as
#expnumbs<-rexp(S,lambda)
#signs<-sign(runif(S)-0.5)
#x<-signs*expnums

for (i in 1:S) {
lambda[i]<-runif(1,LO,UP)
expnumb[i]<-rexp(1,lambda[i])
sign[i]<-sign(runif(1)-0.5)
buni10[i]<-sign[i]*expnumb[i]  }



Red= Uni(0,10)



EXAMINING SHRINKAGE IN 
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Simulated data sets



BAYES R



E(β) CLEARLY 0 FOR ALL MARKERS

WHY THIS AND NOT SOMETHING ELSE?



Variance same
for all markers



SHRINKAGE IN BAYES R











RECALL:
If two priors lead to two 
different posteriors, 
informatiois scant.

NOTE:
Bayes R“flattens” to 0, most
marker effects? What
About the quest for
Small-effect variants?

REMARK:
No model comparisons at 
all. For example, does 
Bayes R receive more 
support than Bayes A?



DO YOU LIKE 
MIXTURES?

If there are variants with
large effects (e.g., HDL)
feature selection makes sense







WILD IDEAS:
(open the umbrella…)

• Some friends in animal breeding 
promoting mixtures with zillions of markers 
are getting wild (for discovery purposes)

• Most mixtures fail to converge, plus there 
is severe under-identification problem: will 
never discover small effect variants

• Mixtures can be dangerous (like mixing 
drinks!)



Take home message about the alphabet:
(for n<<p)

Inferences about “genetic architecture”:

Prediction of overall genetic signal:


