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Abstract 

There is an increasing interest unraveling the factors that shape microbiome composition due 
to its association with complex phenotypic traits in livestock. Increasing evidence points to the influence 
of host genetic variation. This interest has coincided with parallel advances in the field of machine 
learning (ML), providing valuable insights into microbial communities. This study aimed to explore the 
gut microbiome of Iberian pigs (n=237) and identify the key taxa relevant for predicting the genetic 
class of two different strains (EE; Entrepelado and RR; Retinto) and their reciprocal crosses (ER, RE). 
For this purpose, we evaluated the performance of eight different ML classifiers, based on 16S rRNA 
sequencing data, and performed traditional differential abundance (DA) analysis between strains. Fecal 
samples were collected from 237 castrated males and sequenced with 16S Illumina MiSeq platform. 
The dataset used to perform the classification comprised 37 genera, from which were selected the best 
features in discriminating samples according to their genetic group. The ML algorithms included tree-
based models, kernel-based models and probabilistic models. Classifiers were trained with a subset of 
the data (train) and their performances were assessed using the area under the ROC curve (AUC) on the 
remaining set (test). Five scenarios were explored (Genetic groups, Purebreds, Maternal and Paternal 
line, and Heterosis groups). Our results showed that the most genetically distant animals (EE vs. RR) 
were more easily discriminated using the trained ML models. The classification of Iberian pigs from 
EE and RR strains reached a mean 𝐴𝐴𝐴𝐴C of 0.80. However, the crossed animals from ER and RE groups 
did not exhibit specific patterns and including them in different groups confused the classification 
process, leading to lower performance results.  The best performing ML model was not the same in all 
the classification tasks, but overall, tree-based models outperformed the other algorithms. Additionally, 
the most important features partially aligned with the taxa that displayed DA between strains. This study 
provides a framework that combines ML tools with microbiome-derived data to extract taxa meaningful 
signatures, that could represent a useful resource to characterize the difference between strains. 
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Introduction 
The Iberian pig breed is often considered as a single population, but it actually comprises five 

different strains (Entrepelado, Retinto, Torbiscal, Lampiño and Manchado de Jabugo) recognized in the 
Iberian Pig Herd Book, each of which has considerable genetic diversity (Clemente et al., 2008; Fabuel 
et al., 2004). Previous research has highlighted the superior meat quality (Ibáñez-Escriche et al., 2016) 
and fertility (Noguera et al., 2019) of the Retinto (RR) strain over the Entrepelado (EE) strain. 
Conversely, the EE strain has shown significant maternal effects compared to RR (Noguera et al., 2019), 
affecting offspring growth. Furthermore, crosses between these strains have shown heterosis effects on 
meat quality and litter size traits (Ibáñez-Escriche et al., 2016; Noguera et al., 2019). Beyond genetic 
factors, research has shown that the host microbiome also plays a role in shaping complex phenotypic 
traits in pigs, such as growth and carcass composition (Bergamaschi et al., 2020). One approach to 
explore the interaction between the host genetic variation and the microbiome in Iberian pigs is to use 
microbiome components as potential biomarkers to classify animals into different genetic groups. The 
development of ML classifiers based on microbiome-derived features (genera abundances) allowed to 
uncover meaningful biological patterns between the microbiome and the trait of interest. This study 
aimed to investigate the gut microbiome of Iberian pigs of two different strains and their reciprocal 



crosses, through application of eight ML algorithms on 16S rRNA sequencing data, identify the most 
suitable set of predictors that could help predict the animals’ genetic groups, and then compare the 
resulting predictors with the results of DA analysis. Finally, we explored explanations for our best 
predictive models and the set of predictors. 
 
Material and methods  

1. Animals and samples 
The animals used in this study belonged to two Iberian purebred pig strains (RR and EE) and 

their reciprocal crosses (ER and RE) from the Iberian Testing Center (CTI) of the company INGA 
FOOD S.A (Extremadura, Spain). The pigs were randomly housed in groups of 80, avoiding full sibs, 
and fattened ad libitum by automatic feeders with commercial diets. In total, 239 castrated males were 
used, of which 74 pigs belonged to the EE strain, 63 to the RR strain, 51 to the RE strain, and 51 to the 
ER strain, where the first letter indicates the paternal line and the second the maternal line. The pigs 
weighed on average 161.60 ± 13.59 kg at the end of the fattening period and were on average 346.74 ± 
45.54 days of age. Feces samples were collected at the CTI facilities before the animals’ transport to 
the slaughterhouse, and stored at -80°C until further analysis. This process involved four separate 
batches of at least 68 animals each, except the last batch of 26 animals. 
 

2. 16S microbiome profiling 
Fecal DNA was extracted and amplified, and amplicons were sequenced in an Illumina MiSeq 

instrument to generate paired end reads of 2 × 300 bp. Sequences were analyzed using QIIME2-2023.7 
(Bolyen et al., 2019) and Amplicon sequence variants (ASV) for each sample were identified using 
DADA2 algorithm (Callahan et al., 2016). Taxonomic annotation was performed using the SILVA 
reference database (Quast et al., 2012) and the ASV table collapsed to the genus level was used for 
further analysis. 
 

3. Diversity and differential abundance analysis 
Alpha diversity metrics (Shannon index and Pielou evenness) were calculated based on raw 

genera counts after rarefaction of the sequences. The Kruskal-Wallis (KW) test was used to assess 
differences in the alpha diversity metrics between samples, with p-value ≤ 0.05 considered significant 
for all statistical tests. Posterior analyses were performed using filtered genera abundances, where only 
genera present in at least 30% of the samples for each strain were included. Genera abundances were 
centered log-ratio (clr) transformed (Aitchison, 1986) and Beta diversity was evaluated by computing 
Aitchison dissimilarity distance matrix. Permanova analysis with 999 permutations was performed on 
the distance matrix to evaluate the differences between strains, age and animal batch. Differential 
abundances (DA) between strains, maternal lines, paternal lines and heterosis groups were identified by 
fitting Bayesian linear models. Genera with a minimum difference mean of 0.50 SD and a P0 
(probability of the difference being either positive or negative) higher than 90% were considered 
differentially abundant.  
 

4. Feature selection and Machine learning analysis 
We applied the Select K best feature selection method (Tislenko et al., 2022) to find reduced 

feature sets that maximize model’s performance. We used the mutual information as a scoring function. 
Eight supervised ML classifiers were then implemented to determine the genetic group of the Iberian 
animals based on the clr-transformed genus abundances. The algorithms include tree-based models 
(Decision Tree (DT), Random Forest (RF), Adaboost (AB), Catboost (CB), XGboost (XGB)), kernel 
based models (Support Vector Machine (SVM)) and probabilistic models (Gaussian Naive Bayes 
(GNB) and Logistic regression (LR)). All the ML algorithms were run using the Sci-kit learn module 
(Pedregosa et al., 2012) in Python v.3.11.5.  
For each algorithm, we explored five different scenarios: 
1. Four-strain scenario: Each strain (EE, RR, ER, RE) was treated as a separate class.  
2. Purebred scenario: Only purebred individuals were included (EE and RR).  
3. Maternal scenario: Individuals were grouped by maternal line (EE/RE and RR/ER).  
4. Paternal scenario: Individuals were grouped by paternal line (EE/ER and RR/RE). 
5. Heterosis scenario: Grouped by crossed (ER/RE) or purebred individuals (RR/EE). 



In each scenario, the dataset was randomly stratified into training and test sets, with a split ratio of 
75/25. The training set was used for model building and selection, and hyperparameter tuning via 5-
fold cross-validation, while the test set was used for independent evaluation of ML performance using 
the AUC measure. Distribution of AUC scores were computed using a 200 times bootstrap resampling 
technique applied to the dataset.  

Results and Discussion 

1. Results of 16S analysis and Diversity 
The 16S amplicon analysis resulted in 683 ASVs with a total of 14 million reads and a mean 

read count of 59,364 ± 15,413 per sample. Taxonomic annotation identified 3 phyla, 5 classes, 13 
orders, 27 families and 55 genera in the 237 fecal samples, from which we retained only genera that 
appeared in at least 30% of the samples in each strain, reducing the list to 37 genera. Analysis of alpha 
diversity metrics using KW test did not reveal any significant differences within samples belonging to 
different strains. Beta diversity revealed a statistically significant, although modest, effect attributed to 
the strain (p-value = 0.029). Conversely, the effects of the animal batch and the age were more 
pronounced, showing a highly significant association between microbiome at genus level and batch (p-
value = 0.001), and similarly between microbiome and the age (p-value = 0.001). 

 
2. Differential taxonomic composition 

After adjusting for batch and age effects, nine genera showed differential abundance (DA) 
(minimum difference mean of 0.50 SD and a P0 higher than 90%). Table 1 shows taxa found to be 
differentially abundant between different genetic groups (comparisons with no DA genera are not 
shown). 

Table 1.  Differentially abundant taxa between different genetic groups 
Comparison groups Differentially abundant taxa 

EE-RR Lactobacillus*, Clostridium_sensu_stricto_1, Acetitomaculum†, 
Frisingicoccus°, Romboutsia‡, and Terrisporobacter 

EE-RE Acetitomaculum† and Solobacterium 
ER-RR Lactobacillus* and Romboutsia‡ 

ER-RE Intestinibacter 
RE-RR Frisingicoccus° and Prevotella 

EE paternal group vs. 
RR paternal group 

Lactobacillus* 

  

*, °, †, ‡: differentially abundant taxa overlapping among different comparison groups 

3. Classification results  
In the Purebred scenario, with only 136 samples, the highest mean 𝐴𝐴𝐴𝐴𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 reached 0.80, which 

is considered a good classification performance (White et al., 2023) indicating an 80% likelihood of 
correctly classifying the samples in their correct group. This performance was reached using GNB and 
LR. Regarding the selected features for this scenario, ten genera were selected using Select K best 
method. Half of them were found to be differentially abundant, namely Clostridium sensu stricto 1, 
Acetitomaculum, Lactobacillus, Frisingicoccus and Terrisporobacter.  Clostridium sensu stricto 1 had 
the highest importance score in the Purebred scenario and was linked to increased intramuscular fatness 
(IMF) and backfat thickness in pigs (Tang et al., 2020). Studies reported that the RR strain surpassed 
the EE strain in meat quality, including backfat thickness (Ibáñez-Escriche et al., 2016). However, DA 
analysis revealed a higher abundance of this genus in the EE strain with respect to the RR strain. This 
inconsistency can be due to the fact that our taxonomic assignation only reached the genus level. 
Whereas Clostridium sensu stricto 1 genus has demonstrated a functional versatility, and contains 
certain species that can be opportunistic pathogens (Hu et al., 2021). Acetitomaculum and Lactobacillus 
showed the second and third highest importance score respectively, demonstrating a DA between the 
EE and RR strains, with RR showing higher abundances of these bacteria. Acetitomaculum is 
recognized for its ability to produce SCFAs through the fermentation of dietary polysaccharides (Biddle 



et al., 2013), whereas Lactobacillus was significantly associated with an increase in fat deposition in 
commercial and nucleus population of pigs (Maltecca et al., 2021). 

In the Maternal scenario, the prediction performance reached an 𝐴𝐴𝐴𝐴𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of 0.64 using CB, 
considered marginally acceptable. Six predictors were included in the predictive models but no relevant 
DA was observed in any bacteria between maternal groups. Various studies suggested that the piglet 
intestinal microbiome is vertically transmitted from the mother (Lim et al., 2023; Liu et al., 2023), as 
they come into contact with the dam’s microbial communities during and after passing through the birth 
canal, during nursing, or suckling and maternal care. However, there is limited information on how 
maternal abilities impact the abundance of microbiome bacteria after the partum.  

In the Paternal scenario, using only five predictors, the classification performance reached a 
mean 𝐴𝐴𝐴𝐴𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of 0.71 using GNB, considered a fair performance result. Only one genus, Lactobacillus, 
exhibited a relevant DA between the two paternal groups, being more abundant in the group of RR sire. 
However, the DA in Lactobacillus between these paternal groups is mainly due to the difference 
between RR and EE. Some studies suggested the influence of the paternal microbiota on the phenotypic 
traits and microbiota of offspring, through paternal transgenerational epigenetic mechanisms, though it 
is still unclear how it regulates offspring microbiota (Li et al., 2022). 

In the Heterosis and Four Strains scenarios, the best models’ performances, using CB and RF 
respectively, achieved an 𝐴𝐴𝐴𝐴𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of 0.63 for both cases. In the Heterosis scenario, Clostridium sensu 
stricto 1 emerged as the most critical variable impacting the models’ prediction, although it was not 
differentially abundant between heterosis groups, which is in line with its poor performance.   

In the Four Strains scenario, the most crucial variable impacting classification was 
Phascolarctobacterium, with its increased abundance correlating with reduced fat content in Large 
White pigs (Pei et al., 2021). 

In general, the genera that exhibited a DA between different genetic groups, were selected as 
important features and were key for prediction across various classification scenarios. However, further 
investigation is needed to determine how these genera might correlate with specific traits that 
distinguish these genetic groups, particularly those related to meat quality traits, with high economic 
importance in Iberian pigs.  

From a performance perspective, CatBoost emerged as the most effective model for classifying 
Iberian genetic groups, followed by Random Forest and XGboost. Nevertheless, the issue of overfitting 
in tree-based models must be highlighted. Finally, we showed that the most genetically distant animals 
(EE vs. RR) were more easily discriminated by their microbiome using the trained ML models. 
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